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variations in baseline response output). 
From 3 to 6 January 1969, peak re- 
sponse rate occurred at about 6 p.m.; 
when the behavior pattern was sampled 
1 week later, the peak had shifted to 
the next 4-hour block, centered at 10 
p.m. Subsequent samples revealed a 
continuing shift to later peak periods, 
reaching 6 a.m. near the end of Janu- 
ary. The transition from peak activity 
to low activity appeared to become 
more abrupt as the month progressed. 
The data show that, on the average, 
peak response rate occurred about 20 
minutes later each day; in 2.5 months, 
we would predict that the animal would 
"lose" about one objective day. A com- 
puter analysis of these data showed 
that the least-squares fit to a 24.3-hour 
trial period yields a ratio of 0.076 be- 
tween the standard error of the ampli- 
tude and the amplitude itself (15). Such 
data support the conclusion that the 
operant behavior rhythm is not syn- 
chronized by an external clock corre- 
sponding to the 24-hour day. This re- 
sult agrees with Aschoff's rule, which 
predicts that a nocturnal animal in con- 
stant light will show a circadian rhythm 
greater than 24 hours. 

The present experiment demonstrates 
that the technique of intracranial self- 
stimulation can be profitably used to 
refine behavioral activity analyses. In- 
deed, Prescott (16) has shown that one 
index of general activity correlates 
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positively with self-stimulation rate. Per- 
haps an oscillating temporal factor, re- 
lated to physiological arousal states (17), 
modulates reinforcement strength. Our 
self-stimulation records may reflect 
rhythms in hypothalamic or limbic 
neural activity. Not only does the hypo- 
thalamus mediate strong positive rein- 
forcement effects, but also its control 
over pituitary secretions (for example, 
adrenocorticotrophic hormone) is 
thought to underlie changes in general 
motor activity (18). 
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Alcohol Aversion in the Rat: 

Behavioral Assessment of Noxious Drug Effects 

Abstract. Injections of p-chlorophenylalanine or n-butyraldoxime given after 
rats were first given a 10-minute drinking test with saccharin or ethanol solutions 

produced a learned aversion to these solutions. These findings suggest that the re- 
duced self-selection of alcohol (preference) resulting from the administration of 
these drugs, reported by others, is not specifically alcohol-related. The technique 
described offers a sensitive procedure for the assessment of unpleasant effects of 
drugs. 
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presumed to cause a decrease in ethanol 
consumption because of the increased 
concentrations of acetaldehyde which 
circulate in the blood after ethanol is 
consumed (1, 2). On the other hand, 
p-chlorophenylalanine (pCPA), which 
depletes brain serotonin, and a-methyl- 
p-tyrosine, which depletes brain cate- 
cholamines, also significantly reduce the 
selection of ethanol by rats; in the case 
of pCPA, the marked ethanol rejection 
persists after drug administration is dis- 
continued (3). 

In studies of the influence of a drug 
on ethanol intake (1), the ethanol in- 
take usually has been measured before, 
during, and after drug administration. 
However, the finding of reduced selec- 
tion or intake of ethanol during or after 
drug administration may be mistakenly 
interpreted to be a result of some spe- 
cific interaction of the drug with etha- 
nol. A major difficulty of this interpre- 
tation is that rats readily learn to avoid 
ingesting any distinctive substance that 
has been associated with toxic effects 
(4), and, if a rat becomes progressively 
sicker while ingesting a particular di- 
etary substance, the rat will develop a 
strong aversion to that substance (5). 
Because the rat learns food aversions 
associated with such toxic effects, it may 
be that drugs that have been shown to 
result in decreased ethanol intake ac- 
tually produced a nonspecific condi- 
tioned aversion to ethanol because eth- 
anol intake was associated with the 
unpleasant effects of the drug. 

The following experiments were per- 
formed to test two of the drugs most 
recently reported to cause a decrease 
in ethanol intake and to determine 
whether these drugs would produce a 
nonspecific learned aversion if they 
were administered in association with the 
drinking of ethanol or of any other dis- 
tinctive solution. Saccharin was chosen 
as such a distinctive solution, since pre- 
sumably its intake bears no relation to 
ethanol intake nor is its disposition af- 
fected by drugs that modify the inter- 
action of the organism with ethanol. 

The subjects were 60 male 250-g 
Wistar rats. Each rat was deprived of 
water for 1 day, and, beginning the next 
day and continuing for 4 days, each rat 
was placed in a test cage (18 by 24 by 
28 cm) where it was offered as its sole 
water supply a daily single bottle of tap 
water for 10 minutes. The rats were 
randomly assigned to ten groups of six 
rats each. On day 5 rats in groups 1 to 
4 were given a 10-minute drinking test 
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charin solution for 10 minutes; all rats 
exhibited a complete saccharin aversion 
when they were tested 3 days later. The 
mean intake of saccharin solution was 
7.6 ml in the first test and 0.2 ml in the 
second test. No attempt was made to 
test whether pyrazole would produce 
an alcohol aversion since the saccharin 
aversion was so conclusive. 

The results clearly reveal that rats 
avoid ingesting solutions that are associ- 
ated with the effects produced by pCPA, 
nBAO, pyrazole, or lithium chloride. Al- 
though the single dose of LiCi might 
have been sufficient to produce transient 
sluggishness and diarrhea in the rat, 
there were no obvious symptoms pro- 
duced by the injections of the other 
drugs. The technique of assessing learned 
taste aversions as used in these experi- 
ments would appear to have widespread 
generality for the assessment of unpleas- 
ant or toxic drug effects not otherwise 
perceived by the investigator or revealed 
in the course of many routine toxico- 
logical evaluations. Since the rat ap- 
pears to learn taste aversions quickly, 
the degree of "unpleasantness" of a 
drug may be determined on the basis 
of whether the drug produces such a 
learned aversion. Thus the behavior of 
the animal may yield a more sensitive 
bioassay than other toxicological or 
pharmacological procedures. 

In the previous experiments which re- 
ported decreased ethanol intake after 
the administration of nBAO (2) or 
pCPA (3), the drugs were administered 
daily and ethanol was continuously 
available to the animals. With such a 
procedure, it is not possible to specify 
the conditioning contingencies and it is 
for this reason that we used a one-trial 
drinking-injection test. However, it 
seems likely that continuous access to 
ethanol with daily drug administration 
would have allowed adequate opportu- 
nity for the establishment of aversive 
conditioning since aversive conditioning 
will occur even when the temporal de- 
lay is long (6, 8). Animals avoid pre- 
viously acceptable and familiar solutions 
if their ingestion is followed by sick- 
ness (6), and animals learn to avoid a 
diet which after prolonged intake has 
made them sick (5). 

When one assesses any of these drugs, 
such as pCPA, nBAO, or pyrazole, for 
potential alcohol aversion effects, one 
must determine whether at lower drug 
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with alcohol or whether they are effects 
of the drug per se, revealed, for example, 
by testing with a solution of saccharin. 

1246 

dosages the unpleasant effects result 
only from the interaction of the drug 
with alcohol or whether they are effects 
of the drug per se, revealed, for example, 
by testing with a solution of saccharin. 

1246 

Such a differentiation is necessary be- 
fore one may conclude that a drug acts 
specifically to cause a learned aversion 
to alcohol. Since the substantially lower 
dosages used in these experiments were 
clearly sufficient to cause a learned 
aversion to solutions other than alcohol, 
we conclude that the effects on the self- 
selection of alcohol previously reported 
for these drugs (2, 3) are based, not on 
their specific effects with relation to 
alcohol, but rather on their character as 
noxious agents. 
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Hippocampal lesions (1), septal le- 
sions (2), and injections of sodium 
amobarbital (3) have similar effects on 
behavior in learning situations involv- 
ing reward and the omission of ex- 
pected reward ("frustrative nonre- 
ward," 4). Behavioral responses to re- 
ward are unaffected, whereas behav- 
ioral responses to nonreward are seri- 
ously impaired. The similarity in the 
patterns of dysfunction produced by 
these three treatments prompted us to 
seek a common mechanism of action. 
One possibility is that all three treat- 
ments affect behavior by disrupting the 
hippocampal theta rhythm, which is 
affected by barbiturate drugs (5). We 
therefore investigated the relationship 
between the hippocampal theta rhythm 
and the occurrence of reward and 
frustrative nonreward, and the effects 
of sodium amobarbital on septal driving 
(5) of the hippocampal theta rhythm. 
Our results suggest that (i) reward 
and frustrative nonreward produce dif- 
ferent frequencies of theta rhythm, and 
(ii) the driving thresholds for these 
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One possibility is that all three treat- 
ments affect behavior by disrupting the 
hippocampal theta rhythm, which is 
affected by barbiturate drugs (5). We 
therefore investigated the relationship 
between the hippocampal theta rhythm 
and the occurrence of reward and 
frustrative nonreward, and the effects 
of sodium amobarbital on septal driving 
(5) of the hippocampal theta rhythm. 
Our results suggest that (i) reward 
and frustrative nonreward produce dif- 
ferent frequencies of theta rhythm, and 
(ii) the driving thresholds for these 
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frequencies are differentially affected 
by amobarbital. 

A bipolar recording electrode aimed 
at the hippocampus and a bipolar 
stimulating electrode aimed at the 
septum were stereotoxically implanted 
in male Sprague-Dawley rats (~ 400 g). 
Coordinates, with skull flat from lambda 
to bregma, were: hippocampal, 6 mm 
posterior to bregma, 2 mm lateral, 5 
mm deep (from the surface of the 
skull); septal, 1 mm anterior; midline, 
5.5 mm deep. Electrode placements 
were examined histologically at the 
end of the experiments. The recording 
electrodes were all located in the 
posterior dorso-medial hippocampus, 
and the stimulating electrodes were in 
the medial septum, on, or very close 
to, the midline. 

The electrodes consisted of two, 
Teflon-covered stainless-steel wires (200 
/,m diameter) twisted together and 
exposed only at the tips. The tips were 
adjacent to each other in the septal 
placement and separated by 2 mm 
vertically in the hippocampal place- 
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Frequency-Specific Relation between Hippocampal 
Theta Rhythm, Behavior, and Amobarbital Action 

Abstract. The frequency of the hippocampal theta rhythm in freely moving 
rats varies predictably in relation to behavior in a simple learning situation. The 
theta rhythm may be driven by electrical stimulation of the medial septal area 
at frequencies within the theta range. The threshold for septal driving is lowest 
at that frequency which the rat displays in response to frustrative nonreward; 
the driving threshold is selectively raised at this frequency by sodium amobarbital. 
It is suggested that the behavioral effects of amobarbital are due to a disruption 
of the theta frequency normally displayed in response to nonreward. 
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