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Metallic and Nonmetallic Behavio 
in Transition Metal Oxide 

Electron correlation effects in narrow d bands ai 

polarons are discusse 

SCIENCE 

present time is whether small polarons 
are formed. The evidence has recently 
been reviewed by Bogomolov et al. (6), 
Adler (7), and Austin and Mott (8). 
Many of the present uncertainties can 

Ir only be resolved with better experi- 
mental data, and a major problem is 

,X~S -the preparation of good crystals. 
In this paper we shall confine our- 

selves mainly to the 3d oxides with the 
nd simplest structures. These are typical 

of a wide range of more complex sys- d. tems which include ferrites, garnets, ti- 
tanates, perovskites, and glasses. 

I. G. Austin and N. F. Mott 

Energy States of 3d Ions 

For many crystalline solids our de- 
scription of the conduction electrons 
is based on the Bloch-Wilson band 
theory of solids introduced in the early 
1930's (1). The electrons are assumed 
to move freely and independently 
through the lattice, each with a well- 
defined wavelength and a long mean 
free path. This model breaks down for 
many 3d transition metal oxides, pri- 
marily because it neglects Coulomb 
interactions between the d electrons, 
and these are important when the en- 
ergy bands are narrow. This was first 
recognized from the pioneering work 
of de Boer and Verwey on nickel oxide 
(NiO), cobaltous oxide (CoO), and 
ferric oxide (Fea03) in 1937 (2). The 
transition metal oxides show very di- 
verse electrical behavior. They can be 
metals like titanium monoxide (TiO) or 
insulators like manganese monoxide 
(MnO), although the Wilson theory 
predicts metallic behavior in both cases 
for the partly filled 3d shells. Others, 
such as vanadium dioxide (VO2), under- 
go a transition from metal to insulator 
at a critical temperature. The conduc- 
tion electrons move in bands formed 
primarily from the d orbitals of the 
transition metal ions, and these are 
narrow because the ions are rel tively 
far apart. The Wilson theory fails for 
such bands because it neglects electro- 
static repulsion between the electrons, 
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as Mott first pointed out in 1949 (3). 
This interaction leads to a localization 
of the d electrons and a nonconducting 
state. It also has a crucial effect on the 
nature of the transition from metal to 
insulator; this is a many-body effect, 
and there is as yet no generally recog- 
nized theory of what happens at the 
transition point (4). 

A conduction electron moving 
through an ionic crystal will polarize 
and distort the lattice in its vicinity. 
This process is known as polaron for- 
mation (5), and the concept is espe- 
cially important when we consider the 
semiconducting properties of these 
oxides. For wide-band conductors, like 
the alkali halide crystals, this electron- 
lattice interaction leads to a fairly 
small increase in the effective mass of 
the carrier. But in narrow-band ma- 
terials entirely new effects can arise. 
The interaction with the lattice is much 
stronger because the electron moves 
slowly, thus giving the heavy ions time 
to respond more fully. The potential 
well produced by the deformation of 
the lattice may be sufficient to trap 
the electron on a particular ion, thus 
forming a "small polaron." At high 
temperatures the carrier then moves 
from site to site by a thermally acti- 
vated hopping process with a rather 
low mobility of the order of 0.1 square 
centimeter per volt per second or less. 
The observed mobilities in many 3d 
transition metal oxides are of this order, 
and a controversial question at the 

First let us consider briefly the pre- 
dictions of simple crystal field and band 
theory, neglecting any electron correla- 
tion effects. We assume, for simplicity, 
that the binding forces in the crystalline 
oxides are purely ionic. Although the 
measured covalency parameters are 
small (9) ( 3 percent), they are im- 
portant in a determination of the ef- 
fective width of any d bands. 

On this view the 02- ions form 
closed shells, and the cations have the 
electron configurations 3dn 4s0, where 
n has values from 0 (titanium dioxide, 
TiO2) up to 9 (cupric oxide, CuO). 
The oxygen ions form a close-packed 
array with the relatively small 3d ions 
occupying sites of octahedral or lower 
symmetry. In the solid the filled 2p 
oxygen orbitals and the empty 4s levels 
broaden and interact to form bonding 
and antibonding states. Theory and ex- 
periment show that these are separated 
by about 5 electron volts in these 
oxides; the 3d states that we are con- 
cerned with lie within this forbidden 
gap (Fig. 1). 

In a free transition metal ion there 
are five orbitally degenerate 3d states, 
each having a twofold spin degeneracy. 
In the oxide these are split by the 
intense electric field set up by the 
02- ions. Let us consider CoO as an 
example. The lattice has the cubic struc- 
ture of rock salt, and the 3d cations 
are in an octahedral crystal field. This 
resolves the degeneracy of the ground 
state to give two upper (eg) levels and 
three lower (t2g) levels. The splitting 
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(A in Fig. 1) is about 1 electron volt. 
Kramers' theorem (7) shows that the 
spin degeneracy of the orbitals is not 
removed, even in lower symmetries or 
by spin-orbit coupling. In CoO five of 
the seven d electrons occupy t2g orbitals 
and the remaining two occupy upper 
eg levels. 

According to the Wilson band model, 
a crystalline array of N monovalent 
atoms, with r atoms per unit cell, 
will form an energy band with 2 Nr 
states. Thus if r = 1, the band is half- 
filled and metallic behavior is predicted 
regardless of the bandwidth-that is, a 
nonvanishing conductivity as the tem- 
perature T (in degrees Kelvin) ap- 
proaches zero. On this basis the t2g 
electrons in CoO should form a metal- 
lic band by overlap between the 3d 
ions, since r 1. But in fact CoO is 
an insulator. This argument is strictly 
valid only above the Neel temperature 
(7); below 300?K CoO is antiferro- 
magnetic and the lattice is slightly dis- 
torted (tetragonal). 

More detailed symmetry arguments 
(7) show that for oxides with one 
cation per unit cell and an odd number 
of d electrons per cation, crystal field 
splitting alone can never give an in- 
sulating ground state. But for some 
oxides with a low symmetry and an 
even number of cations per unit cell, 
it could, at least in principle. For com- 
pounds like MnO, CoO, and NiO the 
Wilson band theory certainly fails. 

Classification 

It is convenient for us [following Ad- 
ler (7)] to group the simple 3d oxides in 
three classes according to their observed 
electrical behavior. A representative se- 
lection is given in Table 1. The common 
crystal structures which occur are rock 
salt (as in NiO), rutile (as in VO2), 
and corundum (as in chromic oxide, 
Cr203). 

Compounds in class I are insulators 
when pure. Some have empty d bands 
(class Ia), and others have a partly 
filled d shell (class Ib); the latter are 
antiferromagnetic. All these materials 
become extrinsic semiconductors when 
suitably doped. Compounds in class II 
are metallic at all temperatures with 
resistivities between 10-1 and 10-6 
ohm-centimeter. Some are supercon- 
ducting (TiO), and others are ferro- 
magnetic (chromium dioxide, CrO2). 
Compounds in class III undergo a sharp 
transition to a highly conducting state 
at a critical temperature. This is illus- 
trated in Fig. 2 for a few compounds; 
some dozen or so materials are now 
known which show similar but less 
striking changes. The transition is al- 
ways accompanied by a small crystal- 
lographic change and sometimes by a 
change in magnetic ordering. 

The semiconducting behavior of the 
compounds in class Ib was first studied 
by de Boer and Verwey in the 1930's; 
they introduced the concept of a semi- 
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Fig. 1 (top left). Schematic energy levels in a 3d oxide. Fig. 2 (right). Transitions 
from metal to insulator. Fig. 3 (bottom left). The Ni8+ hole bound to a Li acceptor 
center. 
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conductor with a mixed valence state. 
For example, if Li+ ions are substituted 
for Ni+ ions in NiO, then Ni3+ ions 
are created to maintain charge neu- 
trality. The Li+-Ni3+ complex forms 
a dipole (Fig. 3). When the Ni3+ 
ion (or hole state) is thermally 
ionized from the Li+ center, it moves 
through the crystal giving p-type con- 
duction. This shows that the 3d 
orbitals of the nickel ions overlap suf- 
ficiently to allow some current to pass. 
Thus the absence of conductivity in 
pure NiO is not simply due to the 
large separation between the Ni2+ ions; 
it must be a many-body electron effect. 

Electron Correlation 

The conditions under which Coulomb 
interactions between the charge carriers 
in a crystalline lattice can lead to lo- 
calization and nonconducting behavior 
were first investigated by Mott (3, 10) 
in 1949. He considered a simple cubic 
lattice of N one-electron (hydrogen) 
atoms with a periodicity a at T = 0?K. 

For an electron moving in such a 
lattice, there are, according to the 
band model, 2N Bloch wave functions 
of the form 

A = exp (ikx)U(x) 

in the first band. In this equation k 
is the wave vector, of the electron in 
the x direction, U is a periodic func- 
tion of x, and i is \/- 1. This allows 
for the two spin directions. The anti- 
symmetrical N-electron wave function 
for this model is usually written as a 
determinant in terms of the half of these 
wave functions with the lowest energy. 
This wave function neglects correlations 
between electrons of opposite spins in 
the same orbitals. It allows fluctuations 
in which two electrons with antiparallel 
spins appear on the same atom. Such 
"polar" fluctuations or ionic states are 
necessary for the metallic conduction 
predicted by this model. But because of 
the Coulomb repulsion energy between 
the electrons (e2/rl2, where e is the 
electronic charge and r12 is the distance 
between electrons 1 and 2-we denote 
its mean over one atom by 1), ionic 
states are energetically unfavorable. On 
the other hand, by spreading out or 
delocalizing to form a conduction band, 
the electrons have minimized their 
kinetic energy, and a measure of this 
is the bandwidth W. 

In order for a metallic state to be 
stable, W must be larger than 1. But 
if the overlap between the centers is 
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small and W is less than 1, then the 
Coulomb energy term is more signifi- 
cant and the electrons tend to stay far 
apart. Mott argued that in this case the 
Coulomb repulsive energy is minimized 
by placing exactly one electron on 
each center. More precisely, one elec- 
tron is placed in each of the localized 
Wannier wave functions (Fig. 4) which 
can be formed from the Bloch states 
of the whole band. This gives a non- 
conducting state at T = 0 which is 
sometimes known as a Mott insulator. 
A formal proof of this nonconducting 
property for large values of a has been 
given by Kohn (11). 

The effect of the Coulomb terms 
e2/r12 up to this point is intra-atomic; 
that is to say, it deals with the inter- 
action of electrons within an atom. 
However, the Coulomb interaction is 
long-range, and this leads to some 
further considerations. Mott originally 
proposed that there ought to be a dis- 
continuous change in the carrier density 
n at a critical spacing a0, which depends 
on the material. The argument is as 
follows. If one free electron and hole 

* * 0 * N 

A 

B 

Fig. 4. (A) Bloch wave function which 
gives a conducting state. (B) Localized 
Wannier wave function which gives a 
nonconducting state. The filled circles rep- 
resent atoms. 

1 /a 
Fig. 5. (A) Mott transition. (B) Wilson 
metal, if we assume a finite mean free 
path for the electrons in the metallic 
phase; a is the interatomic distance. 
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were created in the insulator, they 
would attract each other by way of 
the Coulomb interaction 

V = - e'/Kr 

(where K is the static dielectric con- 
stant) and form a bound state, or 
exciton pair. If many carriers were 
present, however, the Coulomb field is 
screened, 

V - (e2/Kr) exp (- ar) 

(where a is the screening constant) and 
bound states are not formed. Thus, as 
a decreases, a sharp transition occurs 
from a state with no free carriers (at 
T = 0) to a large metallic density 
(Fig. 5). 

Hubbard (12) has shown how the 
e2/rl2 term can produce a forbidden 
gap between occupied and nonoccupied 
states in the middle of an s-band (Fig. 
6). In this model the Hubbard gap (s 
in Fig. 6) drops continuously to zero 
as a decreases and does not vanish 
suddenly as predicted by Mott. But in 
Hubbard's approximation the long- 
range Coulomb interactions, which 
would give exciton pairs, are neglected. 
Mott now believes that, when a changes 
continuously, a discontinuous change 
in the number of charge carriers is 
unlikely, and that the model of Kohn 
(13), which predicts an infinite series 
of second-order changes leading up to 
the transition, is likely to be near the 
truth. The matter is by no means cer- 
tain, but nonetheless it remains highly 
probable that a critical value of a 
still exists, on one side of which the 
material does not conduct when the 
temperature is zero and on the other 
side of which it behaves like a metal, 
but with no discontinuity in n. 

We see that for an insulator like 
NiO, the Hubbard gap is the energy 
required to create a pair of Ni+-Ni3 
ions in pure material. This is probably 
about I to 5 electron volts. For the 
other compounds in class lb the energy 
requirements are comparable, and we 
regard these compounds as Mott-Hub- 
bard insulators with a large gap. We 
also note that a Mott-Hubbard insu- 
lator has localized magnetic moments, 
but the existence of the gap e does not 
depend on any long-range magnetic 
ordering of these moments; NiO re- 
mains an insulator above the Neel point. 

In oxides that are semiconducting 
as a result of impurities, the energy 
needed to create a free carrier is much 
less than that in the corresponding in- 
sulator-the ionization energy of a 
Li+-Ni3+ center is a few tenths of 

Table 1. Classification of transition metal 
oxides and nickel sulfide. 

Class Compounds 

Insulators 
Ia Sc203, TiO2, V205 (empty d bands) 

lb 
Semiconductors 

NiO, CoO, MnO, FeO, Fe,aO, 
Cr,O (antiferromagnetic) 

Metals 
II TiO (superconducting), CrOa (fer- 

romagnetic), ReOa (5d) 
Transition from insulator to metal 

III VO,, V20a, Ti0a3, Fe,aO (3d); 
NiS, NbO2 (4d) 

an electron volt. The motion of the 
free carrier (Nia+ hole) through the 
lattice can be described as follows. The 
problem is like that of the hydrogen 
lattice for a > a, but with one electron 
missing. The hole, or defect electronic 
state, has a large number of equivalent 
lattice sites available to it. Since the 
motion of the hole does not require 
two electrons on one site at any time, 
the correlation term I described earlier 
does not arise. We expect, therefore, 
that the single hole will move with a 
definite wave number k, just like an 
electron in a band, and that the band- 
width will be narrow. However, this 
neglects any question of polaron forma- 
tion, which we now discuss. 

Polaron Models 

The possibility that a slow-moving 
electron in an ionic crystal can be 
trapped by the polarization cloud 
around it was first investigated by 
Landau in 1933. If the electron re- 
mains for some time in the vicinity of 
a particular ion, the lattice will deform. 
Positive ions move toward the electron, 
and negative ions move away from it. 

1/a 
Fig. 6. Splitting of a narrow conduction 
band as envisaged by Hubbard. Shaded 
states are occupied. 
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Fig. 7 (left). (A) Field of the electron in the undistorted lattice. 
(B) Wave function of the electron for a polaron of intermediate 
radius r,. (C) Trapping potential; for x > rp this is given ap- 
proximately by Eq. 1. For x < rp this equation does not apply 
because of the finite size of the electron, and we assume for 

x simplicity that Vp is constant. Fig. 8 (above). Polarization 
wells before hopping. (a) Unexcited well (the electron is in 
well A). (b) Both wells are excited so that the electron can 
tunnel from A to B. 

The electrostatic potential near the 
electron is then 

- e/Kr 

But if the ions did not move, the po- 
tential would be 

- e/Kjr 

where K, is the high-frequency di- 
electric constant. Thus the polarization 
of the lattice gives a potential well of 
the form 

P = e 2/Klr (1) 

where 

l/Kp = 1/K. - 1/K 

This is illustrated in Fig. 7. The effec- 
tive radius rp of this well is determined 

by minimizing the total potential and 
kinetic energy. There are two limiting 
cases. (i) For large polarons the kinetic 
energy of the electron dominates, and 

rp is much greater than the interatomic 
distance. The electron still moves in a 
band, but the mass is slightly enhanced. 
(ii) For small polarons rp is less than 
the interatomic distance, and the elec- 
tron is trapped on a single ion. Its 
kinetic energy is negligible, and the 

energy of the polaron is approximately 

W, - e2/KP, rp 

An estimate of Wp may be obtained 
by various methods, the simplest of 
which treats the induced polarization 
on a continuum basis. Values of the 
order of 1 electron volt are found for 
these oxides (8). 

The kind of polaron which is formed 

depends on the "rigid-lattice" band- 
width (2J) of the crystal. By this we 
mean the electronic bandwidth when 
the ions of the lattice are held rigidly 
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in place, so that no polaron can be 
formed. The bandwidth 2J is a mea- 
sure of the kinetic energy gained by 
the electron in spreading out to form 
a delocalized state. But Wp is the energy 
gained by the electron in forming a 
localized state; thus the condition for 
the formation of a small polaron is 

Wp > 2J 

The work of Holstein (14) and 
others has given us a detailed under- 
standing of the way in which the small 
polaron can move through a crystal. 
At fairly high temperatures (of the 
order of T > 2 0, where 0 is the 

Debye temperature), the polaron moves 
from site to site by thermally activated 

hopping. Thermal fluctuations momen- 

tarily give equivalent distortions of the 
lattice at neighboring sites (Fig. 8), 
and the electron tunnels across. If 2J 
is not too small compared with Wp 
(15), the probability of hopping is 

P= v exp (- W,I/kT) (2) 

where v is a lattice vibration frequency 
(~ 1013 cycles per second for the 3d 

oxides) and k is the Boltzmann con- 
stant; WH is the hopping energy and 
is approximately 

WT = 1/2 W, - J 

Conduction is a random diffusion pro- 
cess, and the drift mobility lz increases 
with temperature as 

A = uo exp (- W1/kT) 

where 

o = e a2 v/kT - 0.1 cm2 volt-' sec- 

and a is the hopping distance (a few 

angstroms). 

We see that the hopping process 
gives a low mobility (< 1 square centi- 
meter per volt per second) and, if J 
is comparable with 1/2 W, the hopping 
energy can be quite small. The electron 
remains on one site for an average 
time of P-1 second before hopping. 
Equation 2 shows that this trapping 
time is at least v-1 or the time for one 
molecular vibration (~ 10-13 second). 

Below a temperature of the order of 
?1 0, however, the small polaron be- 
haves like a heavy particle moving by 
the band mechanism. The electron, 
qualitatively like the large polaron, tun- 
nels through the crystal carrying its 

polarization cloud with it. The effective 
mass of the small polaron is 

m,, = m* exp y (3) 

where 

r Wi/ (/2 hwo) (4) 

and h is Planck's constant. Here m* 
is the rigid-lattice effective mass of the 
electron and wo is the frequency of an 

optical phonon. The polaron bandwidth 
is 

2Jp = 2J exp (-- y) 

Thus a large decrease in bandwidth, 
and an increase in effective mass, can 
occur, since y is > 3. Here again the 

mobility is small (< 1 square centi- 
meter per volt per second) and de- 
creases with rising temperature. The 
transition from band to hopping con- 
duction occurs gradually (Fig. 9) at 
a temperature T' which depends on the 

parameters. According to Holstein (14), 
T' is of the order of /2 0, but Lang 
and Firsov predict much lower values 

(5). Moreover, recent experimental 
work on MnO by de Wit and Creve- 
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coeur (16) suggests that the transi- 
tion temperature may be lower. 

If y is ~ 2, then WH from Eq. 4 is 
ho)0 (say, 0.05 electron volt). Such 

a small hopping energy would be dif- 
ficult to identify from experimental 
data, especially as /A varies as 

T- exp (- Wa/kT) 

But the effective mass (Eq. 3) would 
still be appreciably enhanced, perhaps 
by a factor of 10. A polaron, then, 
depending on the temperature range 
and the magnitude of 2J/W,, can be- 
have as a heavy particle moving in a 
band or it can move by hopping. 

Rigid-lattice bandwidths are very dif- 
ficult to estimate in the transition metal 
oxides. The 3d overlap is indirect, in- 
volving hybridization with the 2p orbit- 
als; in addition, the d functions are 
very anisotropic. Overlap integrals from 
antiferromagnetic data indicate that J 
is ~ 0.1 to 0.3 electron volt for NiO. 

Before we turn to the experimental 
evidence on 3d oxides, it is worth noting 
that polaron hopping behavior has been 
observed by Gibbons and Spear (17) 
in molecular sulfur crystals. These 
authors find that J is ~ 0.05 electron 
volt, WH = 0.18 electron volt, and Wp 
= 0.48 electron volt for injected elec- 
trons. The drift mobility is very low 
(< 10-3 square centimeter per volt per 
second), and the electron is trapped on 
one molecule during many molecular 
vibrations. In this case the trapping is 
due to distortion of the molecule and 
not to polarization of the surroundings. 
Similar behavior can occur in other 
molecular crystals. 

Semiconducting Oxides 

Titanium dioxide. Pure rutile has an 
empty d band and is an insulator. When 
Ti3+ (dl) ions are introduced, by re- 
duction or doping, rutile becomes an 
n-type semiconductor. On account of 
the large dielectric constant, the donor 

o 
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Hopping Band 
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Table 2. Activation energies for Fe2+-Fee' 
transport in various systems at 300?K. 

System Activation energy 

FeO, Fe2Oa, Narrow-band conduction, 
and Fe304 hopping (?) at high 
crystals temperatures 

Ferrites 0.2 to 0.3 ev 
Iron phosphate 0.7 to 1 ev 

glasses 0.7 to 1 ev glasses 

activation energies are very small and 
all the carriers are thermally ionized 
above about 20?K. 

Recently, Bogomolov et al. (6) and 
others at Leningrad have carried out a 
variety of experiments on rutile, from 
which they obtained strong evidence 
of small polaron conduction with a 
hopping energy WH of 0.13 electron 
volt. Figure 10 shows the drift mobility 
(,) characteristic which they interpret 
as hopping conduction for tempera- 
tures greater than ~ 300?K. Bogomolov 
and Mirlin (18) also observed a broad 
peak in the optical absorption centered 
at 0.8 electron volt. Such a peak is pre- 
dicted for small polarons, where the 
photon energy hv is ~ 2 W, and is 
due to a Franck-Condon excitation of 
the electron out of its polarization well. 
Bogomolov et al. (6) estimate from 
their measurements that 

Wp ~ 0.4 ev 

and that 

'y = Wp/ihwo ~ 4 

and 

m = m* exp y ~ 150 m 

(m is the rest mass of the electron in 
a vacuum). Thus, according to these 
authors, polaron formation leads to a 
very large enhancement of the effective 
mass. 

Evidence that electrons bound to 
donor centers also form polarons has 
been found by Dominik and MacCrone 
(19) from dielectric loss at 4?K. 

Nickel oxide. Lithium-doped NiO is 

._ 

o 
E 
.;I 
0 

Temperature (?K) 
1000 200 100 

103/ T (?K) 

Fig. 10. Drift mobility of electrons in 
TiO, (6). 

a p-type semiconductor which has been 
very extensively studied. Early workers 
concluded from resistivity and thermo- 
electric power (thermopower) mea- 
surements that the mobility was very 
low (< 10-2 square centimeter per 
volt per second), with WH approximate- 
ly equal to 0.1 electron volt or more 
at room temperature. Recent studies, 
based on samples free of grain boundary 
scattering, show much higher mobilities. 
Uncertainties in the analysis (20) lead 
to two possible mobility curves (Fig. 
11) but there is no suggestion of a 
hopping energy at temperatures below 

500?K. 
Some idea of the bandwidth can be 

obtained by the following argument. 
In a band model the de Broglie wave- 
length of the charge carriers (h/mpv) 
(v is the thermal velocity of the car- 
riers) cannot be less than the mean free 
path between collisions. An equivalent 
condition is that 

g > eA/(mp v)2 

Thus, for NiO at 1000?K, the data 
in Fig. 11 imply that mp is > 10 m, 
or is J < 0.03 electron volt for band 
conduction. 

Experimental evidence on mp is con- 
flicting. Bosman and van Daal (21) 
infer that mp = 6 m from their thermo- 
power studies at high temperatures. 
They suggest that the free carriers are 
large polarons and that there is no 
hopping conduction (curve 2, Fig. 11). 
Hall-effect data (22) indicate a larger 
effective mass. If mp is larger than 
about 20 m, we believe (8) that hop- 
ping conduction is likely at high tem- 
peratures (curve 1, Fig. 11), because 
of small polaron formation or Anderson 
localization (see the section on 3d ions 
in glasses below). It is not clear from 
optical studies (23) whether the free 
holes form polarons, but there is strong 
evidence (21, 23) that bound holes 
form small polarons, which hop around 
the Li centers. 

Below 525 K, NiO is antiferromag- 

103/ T(?K) 

Fig. 11. Drift mobility of holes in NiO. 
After various authors cited in (8). 
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Fig. 9. Drift mobility of a small polaron 
predicted by Holstein (14). 
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netic and the overlap of the d orbitals 
through oxygen ions couples nickel ions 
with antiparallel spins. A Ni3+ hole 
can only move from one magnetic sub- 
lattice to the other if thermal agitation 
produces a spin reversal at one site. 
Contrary to observation, this should 
lead to a drastic reduction in the 
mobility below the Neel temperature. 
One possibility we have discussed else- 
where (8) [see also Appel (5)] is that 
a spin polaron is formed, in which the 
spins near the carrier are canted so as 
to be parallel rather than antiparallel. 
The spin polaron, we assume, could 
move without activation energy. 

Other crystalline oxides. Similar be- 
havior is observed in doped CoO and 
a-Fe.O3. The drift mobilities are - 0.1 
square centimeter per volt per second, 
and they are fairly insensitive to tem- 
perature from 200? to 1000?K. In 
contrast, de Wit and Crevecoeur (16) 
find an activated mobility in p-type 
MnO and suggest that small polarons 
are formed because of the strong Jahn- 
Teller lattice distortion in the d4 state 
of the Mn3+ hole. 

The drift mobilities of ferrites and 
garnets also show a hopping energy and 
are very small (8). Thus in doped co- 
balt ferrite (CoFe204), the mobility for 
electron transfer between Fe2+ and 
Fe3+ ions is ~ 10-4 square centimeter 
per volt per second, and the activation 
energy is ~ 0.2 electron volt. But for 
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Fe2+-Fe3 + transfer in natural mag- 
netite (Fe3O4), a crystal with very sim- 
ilar structure, the mobility is ~ 0.1 
square centimeter per volt per second 
and is not thermally activated. The rea- 
son for this difference is not clear (8). 

Metallic Compounds 

Titanium monoxide has the d' con- 
figuration and shows many properties 
of a normal metal. The resistivity is , 
10-4 ohm-centimeter, and the metal 
becomes superconducting at 0.68?K. 
This shows that the d orbitals in these 
oxides can give good metallic conduc- 
tion. 

Chromium dioxide is ferromagnetic 
with a magnetic moment of 2 Bohr 
magnetons per metal ion. Mott has 
postulated (24) that this material is a 
semimetal with a small Hubbard gap, 
as is the case for vanadium trioxide 
(V203) (see below). 

Transitions from Metal to Insulator 

As we have already stated, some 
transition metal oxides and sulfides 
show a transition from semiconductor 
behavior, which is probably intrinsic, 
to "metallic" behavior at a critical tem- 
perature Tt (Fig. 2). These include 
VO2, V20O, titanium trioxide (Ti2O3), 

Temperature (?K) 

Fig. 12. Resistivity as a function of temperature in the metallic phase of V,Os. At 
pressures above 25 kilobars the metallic phase is stable down to 0?K. [After McWhan 
and Rice (28)]. 
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nickel sulfide (NiS), and Fe3O4, all ma- 
terials in which there are electrons in 
the 3d band. By "metallic" behavior we 
mean a conductivity in the range 103 to 
104 per ohm-centimeter which varies 
little with temperature. 

The mechanism for the transition is 
certainly not the same for all these 
materials. Thus in FeaO4 the octahedral 
sites contain a mixture of Fe2+ and 
Fe3+ ions, and at low temperatures the 
electrons take up positions so that the 
two kinds of ion form a superlattice. 
The transition occurs when this long- 
range order of electrons is destroyed. 
Nothing of this kind can occur in the 
other substances listed. There have been 
many theoretical attempts to explain 
their properties (see 7, 24), and there 
is as yet no certainty about the correct 
model. Some of the salient facts that 
have to be explained are as follows. 

1) There is always some change of 
volume or of structure at the transi- 
tion; thus in the high-temperature phase 
of VO2 the vanadium ions are equally 
spaced along the c-axis but below Tt 
they pair up. In V203 there is a volume 
expansion of 3 percent below the tran- 
sition; in Ti2O3 and NiS there is a 
change in the c/a ratio. 

2) Nickel sulfide and V2Og are anti- 
ferromagnetic with moments of about 
2 and 1 Bohr magnetons, respectively 
(25), in the semiconducting phase; 
VO2 and Ti203 are not antiferromag- 
netic, and none of these materials shows 
long-range antiferromagnetic order in 
the metallic phase. 

3) The band gap in the semicon- 
ducting phase is small (< 0.5 electron 
volt). In those oxides which show anti- 
ferromagnetism (NiS and V203), it 
has been suggested that this is a small 
"Hubbard" gap of the same kind as 
in NiO, and that these materials are 
close to the critical lattice spacing for 
the insulator-to-metal transition. In 
other oxides the gap may be due to a 
crystal distortion or to lower symmetry 
(see the section on energy states above) 
with or without magnetic ordering. 

4) Vanadium dioxide and V203 in 
the metallic phase show evidence of 
being semimetals (like bismuth), that 
is to say, of having a fairly small num- 
ber (~ 0.2 per ion) of electrons and 
an equal number of holes. The main 
evidence comes from optical (26) and 
thermopower (27) measurements and 
high-pressure studies (28). This be- 
havior may be due to bands which 
overlap slightly as a consequence of the 
crystal structure or overlapping Hub- 
bard bands. Alternatively, if the Hub- 
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bard gap (or band gap) is small and 
equal to less than half the binding en- 
ergy of a polaron (Wp), the semi- 
metal may consist of a gas of n- and 
p-type polarons (24). The carriers could 
lower thefr energy by forming polarons 
as long as the density is low and the 
polarization clouds do not overlap. 

5) In most theories the thermo- 
dynamic "driving force" for the transi- 
tion is thought to be the high entropy 
of the conduction electrons in the me- 
tallic state; there are, of course, other 
possibilities, such as a change in the 
magnetic or phonon entropy. The 
former hypothesis would imply a very 
large effective mass. Polaron formation 
has been suggested to account for 
this (24). 

6) Adler and Brooks (29) have 
shown that a crystal with a narrow 
half-filled band will always be distorted 
at 0?K to give a band gap, if the de- 
crease in electronic energy from dis- 
tortion more than compensates for the 
strain energy, as in the Jahn-Teller ef- 
fect. Their model also predicts a de- 
crease and ultimate vanishing of the 
gap with rising temperature, due to ex- 
citation of carriers across it. 

7) In the case of V203, which con- 
tracts by 3 percent in the metallic 
phase, McWhan and Rice (28) have 
shown that above a pressure of 25 
kilobars the metallic phase is stable 
down to the lowest temperature. The 
resistance-temperature curves they ob- 
tain above these pressures are shown in 
Fig. 12. At low temperatures the re- 
sistivity is proportional to T2. This be- 
havior can be explained on the assump- 
tion that the material is a semimetal 
and the resistivity is due to collisions 
between electrons and holes. To ac- 
count for the magnitude of the resistiv- 
ity and the saturation at about 200?K, 
one must assume a very low degeneracy 
temperature (or almost classical elec- 
tron gas) and thus an effective mass 
of ~ 20 m. This is consistent with the 
'high entropy needed to provide the 
driving force for the transition. Such 
a high effective mass in our view sug- 
gests polaron formation. 

To summarize, then, this class of ma- 
terial has in the semiconducting phase 
a small intrinsic band gap, which may 
be due to structure or in some cases 
may be a Hubbard gap. Comparatively 
small changes of volume, structure, or 
c/a ratio cause a small amount of over- 
lapping between the bands, so that car- 
riers of both signs are present in the 
ground state. These have a high effec- 
tive mass, probably due to polaron 
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formation, and the entropy of the elec- 
tron gas is such that at the critical 
temperature the metallic phase has the 
lower free energy. 

The 3d Ions in Glasses 

So far we have been concerned with 
crystalline substances. Many glasses can 
be prepared containing 3d transition 
metal ions with different valence states, 
for example, Fe2+ and Fe3+ ions in 
phosphate glasses. Such materials show 
electronic conduction (8, 30). A com- 
parison with the crystalline 3d oxides 
is interesting because it throws light 
on another type of electron localization, 
namely, Anderson localization. 

Anderson (31) has shown that for 
a narrow-band (tight-binding) situation 
all the states are localized if the mean 
disorder potential WD between the ions 
is greater than - 5 times the total band- 
width. For the 3d glasses, polaron bands 
are unlikely, and the hopping prob- 
ability between centers is proportional to 

exp { - (WH 1/2 WD)/kT} (5) 

Table 2 compares the activation en- 
ergy for Fe2+-Fe3+ exchange in a 
glass with that in the crystalline oxides. 
The difference between the glasses and 
ferrites is probably too large to be 
simply a WD disorder term, but at pres- 
ent there is no direct evidence about 
the size of this term in either group of 
material. At low temperatures multi- 
phonon hopping processes are frozen 
out, and WH in formula 5 should 
vanish, leaving the WD contribution. 
However, low-temperature data on van- 
adate glasses indicate that there is no 
WD term, and the conduction activa- 
tion energy tends to zero (8). 

Impurity conduction in 3d oxide 
crystals is probably a similar process 
(30), and again there is no evidence 
of a disorder term of the expected mag- 
nitude. This behavior is not fully un- 
derstood but it may mean that at low 
temperatures the electron hops prefer- 
entially a distance greater than that to 
the nearest neighbor (8), because it 
can thereby find a state for which W1) 
is lower. 

Summary 

Many of the striking properties of 
these materials arise from Coulomb 
interactions between the d electrons 
and a strong electron-lattice coupling. 
Disorder also has a marked influence, 

and this aspect is perhaps the least 
understood at the present time. All 
these effects lead to localized electron 
states and a failure of conventional 
band theory. The study of these ma- 
terials should give a deeper under- 
standing of low-mobility charge trans- 
fer in a wide range of systems and of 
the nature of metallic and nonmetallic 
states in solids. 
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