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to study a behavioral reflex that under- 
goes habituation and dishabituation. We 
have progressively simplified the neural 
circuit of this behavior so that the 
action of individual neurons could be 
related to the total reflex. As a result, 
it is possible to analyze the locus and 
the mechanisms of these behavioral 
modifications. We now describe be- 
havioral parameters of habituation and 
dishabituation of the gill-withdrawal 
reflex in Aplysia. 

Habituation and dishabituation are 
simple behavioral modifications often 
considered to be the most elementary 
forms of learning (3-5). Habituation 
is the decrement of a behavioral re- 
sponse that occurs when an initially 
novel stimulus is repeatedly presented. 
Spontaneous recovery of the decre- 
mented response occurs if the stimulus 
is withheld for a period of time. Dis- 
habituation, the restoration of a pre- 
viously decremented response, occurs 
following a change in the stimulus pat- 
tern, such as the presentation of an- 
other, stronger stimulus (4). 

Parametrically similar forms of short- 
term habituation, which last from sev- 
eral minutes to several hours, have been 
demonstrated for a variety of behavior- 
al responses in all animals which have 
clearly developed central nervous sys- 
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Dorsal view of an intact animal showing a fully contracted gill. Normally 
ia and mantle shelf obscure the view of the gill, but they have been re- 
low direct observation. The relaxed position of the gill is indicated by the 
s. The tactile receptive field for the gill-withdrawal reflex includes the 
the edge of the mantle shelf. (B) The animal was immobilized in a small 
rntaining cooled and aerated circulating seawater. The edge of the mantle 
ined to a substage, and a constant and quantifiable tactile stimulus consisting 
t of seawater was delivered by a Water Pik (a commercially available oral 
aratus). The stimuli were controlled by a Grass S-8 stimulator and were 
msec. The gill contractions were monitored with a photocell placed under 
output of the photocell was linearly related to the area uncovered as the 

ed and was recorded on a polygraph. (C) Gill responses to individual tactile 
lifferent intensities. The stimuli were separated by very long intervals of 
tensity of the stimulus could be adjusted anywhere from a very light touch 
Lry units) to a very intense pressure (5.0). The weakest stimulus (2.0) 

a small gill contraction which consisted of a simple, short-latency with- 
nger stimuli (2.5, 3.0) evoked bigger and longer lasting gill responses of 
t latency but, if strong enough (3.5, 4.0), could bring in a second, longer 
ponent. The latency for this second component was quite variable, and with 
t stimuli it sometimes merged with the first component. 
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tems (3-6). The behavioral similarity 
across species suggests that there may 
be common neuronal mechanisms of 
short-term habituation. 

We have examined habituation and 
dishabituation of a behavioral reflex 
controlled by the abdominal ganglion 
of Aplysia. This ganglion offers a 
number of advantages for the cellular 
neurophysiological analysis of behavior- 
al mechanisms. It contains a small 
number of nerve cells, all of which are 
large enough to be penetrated with 
microelectrodes for recording synaptic 
potentials and for direct stimulation. 
Many of these cells have been iden- 
tified as unique individuals or as mem- 
bers of functional clusters (7). The 
connections of some of the cells with 
each other (8) and with peripheral 
sensory and motor structures (9) have 
also been specified. 

The specific behavior that we have 
chosen for analysis is a gill-withdrawal 
reflex that occurs as part of a larger 
defensive withdrawal response that is 
triggered by a potentially noxious tac- 
tile stimulus (Fig. 1A). Analogous de- 
fensive escape and withdrawal re- 
sponses are present in other inverte- 
brates as well as in vertebrates. Prob- 
ably because defensive reflexes must 
be fast to be effective, the neural cir- 
cuitry of these reflexes is usually rela- 
tively simple, often involving only a 
few synaptic relays. In addition, defen- 
sive reflexes typically habituate quite 
readily (6). 

The gill system of Aplysia offers fur- 
ther advantages for a neural analysis 
of behavior. First, most of the motor 
neurons that control gill contractions 
have been identified (9). Second, the 
gill reflex can be effectively studied in 
a restrained, but otherwise intact, ani- 
mal. Third, reflex withdrawal of the 
gill can be elicited from stimulation of 
a receptive field that does not include 
the gill itself, thereby minimizing the 
contribution of local peripheral reflexes. 
Finally, gill movements occur both 
reflexly, as a result of sensory stimula- 
tion, and spontaneously, as a result of 
the endogenous activity of neurons 
within the ganglion (9). The gill sys- 
tem therefore also serves as a potential 
model for a variety of more complex 
behavioral processes that involve stim- 
ulus pairing or pairing of a spontaneous 
response with a reinforcing stimulus. 

A major problem in studying behav- 
ioral responses in Aplysia is to restrain 
these soft-bodied animals with mini- 
mum damage and to apply reproducible 
stimuli to their peripheral sensory re- 
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ceptors. We accomplished this in the 
apparatus shown in Fig. IB. The ani- 
mal was immobilized in a small sea- 
water aquarium, and gill contractions 
were monitored with a photocell placed 
under the gill. The gill-withdrawal re- 
flex can be evoked by a tactile stimulus 
within a receptive field that is centered 
on the siphon and mantle shelf and 
falls off sharply in the surrounding 
regions. The area along the dorsal edge 
of the mantle shelf was pinned to a 
substage, and a tactile stimulus was de- 
livered by means of a brief jet of sea- 
water (10). 

We first examined the responses of 
the animal to individual stimuli that 

A~' - J 

were presented to the same spot on the 
skin and differed only in intensity 
(Fig. 1C). The weakest stimulus evoked 
only a small gill contraction which 
consisted of a simple, short-latency 
withdrawal. Stronger stimuli evoked 
bigger and longer lasting gill responses 
of similar short latency, but, if strong 
enough, these stimuli also brought in a 
second component that usually had a 
much longer latency. 

In order to simplify the behavioral 
analysis of habituation we adjusted the 
stimulus intensity (Fig. 1C) to obtain 
a short-latency component in the ab- 
sence of a superimposed late compo- 
nent. In addition, we further restricted 
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Fig. 2. Habituation, spontaneous recovery, and dishabituation of the gill-withdrawal 
reflex. (A) Records from two response habituations in a single preparation. The inter- 
val between stimuli (ISI) and total number of habituatory stimuli are indicated. 
Part 1 shows decrement of the response with repetition of the stimulus. Following a 
122-minute rest the response was almost fully recovered. Part 2 shows a later experi- 
ment from the same preparation. After rehabituation of the response a dishabituatory 
stimulus consisting of a strong and prolonged tactile stimulus to the neck region was 
presented at the arrow. Successive responses were facilitated for several minutes. 
(B) The time course of recovery was estimated by habituating individual animals with 
repeated stimuli and testing for the percent of recovery by presenting a single stimulus 
after different intervals of rest. The curve is based on 44 separate habituation and re- 
covery runs in 27 different animals. Each point is the average of three measures (last 
point based on only two) taken at roughly the same interval. In longer experiments, 
later responses would often recover beyond the initial control level (for example, 
compare the first response in Al with that in A2). For the purpose of this figure 
all responses equal to or greater than the control response for that run were assigned 
a value of 100 percent. The shortest time in which full recovery occurred was 10 
minutes, whereas the longest time in which the response was not fully recovered 
was 122 minutes. 
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Fig. 3. (A) Habituation with weak and strong tactile stimuli. Responses to the stronger 
stimulus (filled circles) are initially larger and show less decrement with repetition than 
responses to the weaker stimulus (open circles). (B) Spontaneous contractions and 
reflex contractions of gill. Part 1, spontaneous gill contractions (filled circles) remain 
constant in amplitude while reflex contractions (open circles) produced by tactile stimuli 
presented at 5-minute intervals show habituation and then recovery with a 30-minute rest. 
Part 2, sample records from this experiment to compare amplitude of reflex and spon- 
taneous contractions (a) before reflex habituation, (b) during maximum habituation, 
and (c) following recovery with rest. The spontaneous contraction shown is the one 
occurring closest in time, either before or after the reflex contraction. Note the differ- 
ence in time calibration. 

our analysis to the earliest peak of the 
response which is most closely asso- 
ciated with activation of the mono- 
synaptic pathway to be analyzed in 
neurophysiological experiments (2). 

With repetition of the tactile stim- 
ulus at intervals that ranged from 30 
seconds to 5 minutes, the gill responses 
habituated to an average of 25 percent 
of control amplitude (5 to 45 percent) 
(Fig. 2A). Habituation has sometimes 
been seen with intervals as long as 
20 minutes between stimuli. Typically, 
the major part of the decrement was 
produced by the first 5 to 10 stimuli 
in a series (see Fig. 3, A and B). 
Periods of rest that ranged from 10 
minutes to more than 2 hours were 
required for full recovery from habitua- 
tion. To obtain a more quantitative 
measure of the rate of recovery we 
plotted percent recovery in 44 separate 
response habituations with a single 
stimulus given after different intervals 
of rest (Fig. 2B). The data suggest 
that there is a rapid phase lasting 10 
to 20 minutes that accounts for about 
75 to 85 percent of recovery, followed 
by a slow and highly variable return 
to the original response level and often 
beyond. 

After habituation of the response, 
a single strong tactile stimulus pre- 
sented to another part of the animal 
produced dishabituation (Fig. 2A, part 
2). The previously decremented re- 

1742 

sponse was facilitated, and successive 
responses remained elevated for several 
minutes. On occasion, a dishabituatory 
stimulus facilitated the decremented re- 
sponse to an amplitude greater than 
the initial (unhabituated) control re- 
sponse. 

As described above, a contraction 
similar to that evoked by tactile stim- 
ulation also occurs spontaneously. We 
used this spontaneous contraction to 
examine whether reflex habituation re- 
sults from fatigue of the gill muscula- 
ture. We found that spontaneous gill 
contractions that occurred before the 
onset of reflex habituation, during 
maximum response decrement, and af- 
ter recovery of the reflex, were of 
similar amplitude (Fig. 3B), which 
indicated that gill fatigue is not a 
factor in habituation. This inference is 
further supported by the finding that 
an extrastimulus can dishabituate a 
habituated response and that strong 
stimuli (which are more likely to pro- 
duce fatigue) produce less habituation 
than weak stimuli (Fig. 3A). 

Thompson and Spencer (4) de- 
scribed nine parametric characteristics 
of behavioral habituation in vertebrates. 
Six of these characteristics have con- 
sistently been found in Aplysia. In ad- 
dition to (i) response decrement, usual- 
ly a negative exponential function of 
the number of stimulus presentations, 
(ii) spontaneous restoration with rest, 

and (iii) dishabituation, we have 
typically found (iv) habituation of the 
dishabituatory stimulus with repeated 
presentations, (v) greater habituation 
with short rather than long inter- 
stimulus intervals, and (vi) greater 
habituation with weak rather than 
strong stimuli. Three other parametric 
characteristics of habituation have 
sometimes been noted but do not ap- 
pear to be characteristic of habituation 
in Aplysia. These features are (vii) 
greater habituation with repeated pe- 
riods of habituation and recovery, (viii) 
generalization of habituation to a stim- 
ulus in another part of the receptive 
field, and (ix) prolongation of recovery 
following additional stimulation after 
the response has decremented to an 
asymptote. The existence of a satis- 
factory fit between many characteristics 
of habituation in Aplysia and in verte- 
brates suggests that it may be of gen- 
eral interest to analyze the underlying 
neuronal mechanisms, and this will be 
the object of the following two papers 
(1, 2). 
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