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Facilitation of Spindle-Burst Sleep by Conditioning 
of Electroencephalographic Activity While Awake 

Abstract. A slow-wave electroencephalographic rhythm recorded 
sensorimotor cortex of the waking cat has been correlated behavioral 
suppression of movement. Facilitation of this rhythm through conditic 
tively enhances a similar pattern recorded during sleep, the familiar sp 
The training also produced longer epochs of undisturbed sleep. 1 
neural mechanism manipulated during wakefulness appears to funct 
sleep and to be involved with the regulation of phasic motor behavio 
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Localized electroencephalographic 
(EEG) recordings from sensorimotor 
cortex in the cat show a very distinctive 
slow-wave pattern (12 to 14 count/sec), 
which occurs in brief trains periodi- 
cally during the waking state. This 
activity has been termed the sensori- 
motor rhythm (SMR) (1). It is ob- 
served in the quiet, alert animal and has 
been related specifically to the suppres- 
sion of previously trained motor re- 
sponses (1, 2). When the SMR in a 
naive hungry cat is reinforced with 
food, a conditioned EEG response 
associated with stereotyped motionless 

postures develops (3). Such training 
makes it possible to increase significant- 
ly both the occurrence of the SMR and 
the related suppression of movement. 

The waking SMR is similar to EEG 
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Fig. 1. Localized EEG recordings obtained from the cat during alert wakz 
quiet sleep. Conditioned sensorimotor rhythm activity, shown as recoi 
waking animal, can be compared with the spindle-burst pattern which d< 
this same cortical area during quiet sleep. 
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techniques (3). Briefly, EEG signals 
from sensorimotor cortex were fed 
through a frequency filter, set at 12 to 
14 count/sec, into a calibrated attenua- 
tion circuit and then to an integrator cir- 
cuit. These units specified that a signal 
containing at least one-half second of 
the 12 to 14 count/sec SMR frequency, 
at a voltage 100 percent above back- 
ground level, activated a relay. The clos- 
ing and opening of this relay was dis- 
played on the polygraph tracing. In the 
case of SMR conditioning, the relay 
activated the feeding device and thereby 
provided automatic reinforcement. For 
LVF conditioning, the closing of this 
relay precluded activation of the feed- 
ing device, which was operated manu- 
ally by the experimenter during LVF 
activity. The apparatus for detecting 12 
to 14 count/sec activity was operative 
during the collection of all sleep data 
and provided a quantitative measure of 
sleep spindle-burst activity. Analysis of 
sleep duration involved measurement of 
independent epochs of quiet sleep last- 
ing no less than 20 seconds. 

Instrumental conditioning of SMR 
activity in the waking cat produced 
statistically significant changes in both 
of the parameters of sleep measured 
here. A reliable facilitation of spindle- 
burst activity occurred specifically in 
all sleep samples obtained after SMR 
conditioning (Fig. 2). This facilitation 
was still apparent 1 month after the 
termination of all training for animals 
who received the LVF-SMR sequence 
(group 2), but was not sustained with 
the reversed training sequence, where 
intervening LVF conditioning was given 
(group 1). The increase in the percent- 
age of spindle-burst activity after SMR 
conditioning resulted from differences 
in both the number and duration of 
spindle bursts. In addition to this mod- 
ification of the EEG, the mean duration 
of quiet-sleep epochs was also sig- 
nificantly increased immediately after 
SMR conditioning, but this effect was 
not sustained in either group. The 
change reflected a decrease in the num- 
ber of motor adjustments and sponta- 
neous pattern shifts which led to fewer 
brief and more protracted periods of 
quiet sleep (Fig. 3). Statistical evalua- 
tion indicated that these alterations in 
the duration of sleep were reliable. 
No systematic differences were found 
between the SMR and LVF condition- 
ing test sessions in number of instru- 
mental EEG responses or latencies of 
sleep onset. 
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Fig. 2. Comparisons of the percentage of spindle-burst activity in the EEG of quiet 
sleep before (Pre), during (SMR, LVF), and 1 month after (Post) instrumental EEG 
conditioning in the waking cat. Mean data for the two test sequences are shown sepa- 
rately, since a significant order effect was noted. Student t-tests for correlated means 
showed a selective facilitation (P <.01) of spindle-burst activity during sleep follow- 
ing SMR training for group 1 (t = 4.55) and group 2 (t = 8.61). This facilitation was 
sustained 1 month after training in group 2 only (t = 5.69). 

Sensorimotor EEG activity identical 
to the SMR was observed periodically 
during active sleep. No reliable changes 
in the amount of this activity were 
found in the limited samples of active 
sleep collected in this study. Invariably, 
however, this pattern occurred during 
those portions of active sleep devoid of 
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any of its characteristic phasic phenom- 
ena. Thus, phasic motor behavior, in- 
cluding rapid eye movements, was never 
observed in the presence of 12 to 14 
count/sec activity from sensorimotor 
cortex, either during wakefulness or 
during both quiet and active sleep. 

The fact that behavioral manipula- 
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Fig. 3. The frequency distribution of the length of 72 quiet-sleep epochs is shown here 
for each of the conditions of sleep tested. This represents data from nine sustained 
periods of quiet sleep in each animal tested, measured backward from the second or 
third period of active sleep. Following SMR training only, sleep epochs were signifi- 
cantly prolonged (t = 4.20, P <.01). 
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tions which facilitated SMR activity in 
the waking animal led to a selective and 
sustained increase in spindle-burst ac- 
tivity during quiet sleep suggests a com- 
mon neural mechanism for these two 
EEG phenomena, with functional con- 
tinuity across wakefulness and sleep. 
This suggestion is supported further by 
the observation that phasic motor be- 
havior, which is specifically suppressed 
in relation to conditioned SMR activity 
in the waking state, is significantly re- 
duced, also, in sleep following SMR 
conditioning. It is possible, therefore, 
that some aspects of the physiology of 
sleep are determined by the nature of 
waking experience, through the modifi- 
cation of common neural mechanisms 
by environmental contingencies. This 
conclusion is consistent with our pre- 
vious observation that different behav- 
ioral conditions before sleep, such as 
fatigue from prolonged work and frus- 
tration from the extinction of a previ- 
ously rewarded response, can produce 
significant differences in the configura- 
tion of the EEG during subsequent 
sleep periods (5). Thus, the immediate 
factors preceding a particular episode 
of sleep as well as the general history of 
the animal are important determinants 
of the physiological characteristics of 
that sleep. In fact, the complex EEG 
configurations during sleep of higher 
mammals may result from the opera- 
tion of a number of functionally spe- 
cific neural mechanisms. The effective 
combination of these mechanisms could 
be responsible for the particular physio- 
logical pattern of sleep at any given 
moment. 

As suggested previously, the neural 
m.echanism common to the SMR and 
the sleep spindle burst is concerned 
with the suppression of movement, as 
indicated by the absence of phasic 
motor behavior when these rhythms are 
present in wakefulness and in sleep. 
Electrocortical rhythms, such as the 
spindle burst, are thought to result from 
the summation of synaptic prepoten- 
tials gated by thalamocortical feedback 
networks (6). There is evidence that 

removal of sensory input to specific 
thalamic nuclei can abolish thalarocor- 
tical discharge along specific afferent 
pathways, and set these networks free 
to generate slow-wave activity in appro- 
priate cortical projection areas (7). We 
have noted SMR-like electrical activity 
in the ventral posterolateral and ven- 
tral lateral nuclei of the thalamus which, 
although lacking a direct correspoin- 
dence to the cortical rhythm, was clear- 
ly associated with it (8). Thus, afferent 
discharge, possibly proprioceptive, may 
be involved in the generation of this 
rhythm. Hongo et al. (9) have found 
that spontaneous and electrically in- 
duced spindle bursts in the cortex of 
cats were directly correlated with de- 
creases in the rate of discharge from 
muscle spindle afferents in both flexor 
and extensor muscles. However, they 
concluded that the decreased gamma 
motor activity and the corresponding 
sensorimotor spindle bursts were both 
the result of a common central regula- 
tory mechanism. We agree with this 
interpretation, for it is clear that these 
two phenomena bear no causal rela- 
tionship to one another. Hongo et al. 
found that complete ablation of the 
sensorimotor cortex did not interfere 
with the depression of gamma motor 
activity elicited by caudate or thalamic 
stimulation at parameters which in- 
duced cortical spindles in the intact cat. 
Conversely, the sensorimotor rhythm is 
neither abolished nor increased in para- 
lyzed cats (10). 

This central neural mechanism, which 
is responsible both for the development 
of sensorimotor cortex spindle activity 
and for the suppression of phasic 
motor behavior, involves, most likely, 
structures of the extrapyramidal motor 
system. We have found preliminary evi- 
dence of an important contribution 
from the cerebellum. The caudate nu- 
cleus has been implicated also. In addi- 
tion to the extensive work in this area 
by Buchwald and Hull (11), Liles and 
Davis (12) recently reported suppression 
of cortically induced movements with 
stimulation of the rostral and medial 

portions of the head of the caudate nu- 
cleus. Stimulation of these same points 
elicited slow-wave EEG activity over 
sensorimotor cortex. 

Our findings appear to lend new sig- 
nificance to the EEG as an index of 
physiological activity. With certain con- 
figurations, such as 12 to 14 count/sec 
high voltage activity over sensorimotor 
cortex, the operation of specific neural 
mechanisms can be inferred. These 
findings provide, also, for a more com- 
prehensive approach to the sleep proc- 
ess, which undoubtedly has many of its 
roots in waking behavior. 
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