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KsgR, compared with 72 percent of 
those selected for Leu+. Since his is 
distal to leu, these data show that ksg is 
closer to leu than to his. Moreover, the 
recombinants selected for His+ were 
more often KsgR (78/178) than Leu+ 
(60/178); hence ksg appears to lie be- 
tween leu and his (that is, clockwise to 
leu). Finally, in this cross the proposed 
sequence leu-ksg-his would require two 
recombinational exchanges to produce 
Leu- KsgR His+ and four exchanges 
to produce Leu+ Ksgs His+; whereas 
the crossover requirements would be re- 
versed if the sequence were ksg-leu-his. 
The proposed sequence is therefore fur- 
ther supported by the finding that the 
178 His+ recombinants included 28 
Leu- KsgR but only 10 Leu+ Ksgs 
(Table 3). 

The location of ksg-3 was confirmed 
by a cross with HfrH, which donates 
clockwise with leu as its earliest marker 
and lac 10 minutes later. This leu+ 
ksg+ lac+ str+ strain was mated for 
30 minutes with a leu ksg-3 lac str re- 
cipient (FS40). Of 60 Leu+ StrE re- 
combinants, 40 had received the donor 
Ksgs marker, but only 2 had also re- 
ceived the donor Lac+ marker. Thus, 
ksg-3 lies closer to leu than to lac. 

Though further experiments are re- 
quired to map the location of ksg-3 
precisely, it is clear that mutations 
which affect the 30S subunit do not all 
map in a single cluster. This finding 
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may be important for our understand- 

ing of the control of the synthesis of 
30S ribosomal components. 
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Regenerative Calcium Release within Muscle Cells 
Abstract. Free calcium appears to trigger the release of stored calcium from 

the sarcoplasmic reticulum of skinned skeletal muscle fibers immersed in solutions 
with a low concentration of magnesium ion. 
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skeletal muscle myofilaments are acti- 
vated by calcium (1) which is released 
into the surrounding space by the 
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sarcoplasmic reticulum (2). The proc- 
ess is initiated physiologically by a de- 
crease in the electrical potential across 
the surface membrane (3), but the 
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mechanism of this release is poorly 
understood. The .experiments reported 
here indicate that the release process 
has the capacity to be regenerative. 
This conclusion is based on an analysis 
of the contractions induced when fibers 
without their outer membranes are im- 
mersed in solutions of varied composi- 
tion. 

Single fibers from the semitendinosus 
muscle of the frog Rana pipiens were iso- 
lated in silicone oil (4), and the surface 
membrane was removed (5) to allow 
externally applied solutions free access 
to the myofilament space. Segments of 
these "skinned" fibers (1 to 3 mm 
long) were mounted in a force-measur- 
ing apparatus (6) before they were im- 
mersed in aqueous solutions (7). Low 
concentrations of calcium ion in the 
medium were controlled with ethylene 
glycol bis(aminoethylether)-N,N'-tetra- 
acetic acid (EGTA), a calcium chelator 
with relatively little affinity for mag- 
nesium (8). Low concentrations of mag- 
nesium ion were established when the 
concentration of the metal was less than 
that of adenosine triphosphate (ATP) 
with which it forms a complex (8). 

Skinned fibers imtmersed in solutions 
containing calcium buffered with EGTA 
slowly accumulate calcium for many 
seconds before developing force (9), 
and they retain this calcium when 
transferred to solutions of low concen- 
trations of EGTA. Segments could 
therefore be loaded with calcium by 
immersion in a buffered calcium solu- 
tion and then rinsed free of buffer in 
EGTA solutions. After this prepara- 
tion, fibers that were exposed to un- 
buffered, "free" calcium solutions pro- 
duced a quick contraction which was 
superimposed on a much slower con- 
traction (Fig. 1A). The quick contrac- 
tion could be interrupted by transfer- 
ring the fiber to a solution containing 
a high concentration of EGTA (Fig. 
1B); it did not depend on the major 
anion of the bathing medium, as it oc- 
curred equally well in solutions of 
potassium propionate and potassium 
chloride. The respones required that 
the fibers be loaded in a buffered cal- 
cium solution and that the concentra- 
tion of free magnesium be relatively 
low. When fibers were immersed di- 
rectly in the free calcium without ex- 
posure to the buffered calcium (Fig. 
1C), or when the concentration of 
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posure to the buffered calcium (Fig. 
1C), or when the concentration of 
magnesium in solution exceeded that of 
ATP by 1 mM, quick contractions did 
not occur. 

A quick contraction was also in- 
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duced when fibers that had been loaded 
in a buffered calcium solution contain- 

ing propionate as the major anion were 
exposed to a high concentration of 
chloride (Fig. 2A). This contraction 
could also be curtailed by EGTA (Fig. 
2B), but once initiated, it was not in- 
fluenced by removing the chloride (Fig. 
2C). Again, the response depended 
on the concentration of magnesium 
ion and required that the fibers be 
loaded in the buffered calcium. When 
the concentration of magnesium ex- 
ceeded that of ATP, fibers generated 
only a brief twitch-like contraction 
(Fig. 2D). Fibers placed directly in 
the chloride solution without prior ex- 
posure to buffered calcium did not de- 

velop measurable tension. 
Both contractions described above 

could be terminated by EGTA, could 
be induced only after exposure to buf- 
fered calcium, and were followed by 
relaxation without further change in the 
external medium. This suggests that 
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Fig. 1 (top left). Calcium-induced con- 
tractions of skinned muscle fibers. Arrows 
mark immersion in solutions containing 
buffered calcium, free calcium, or EGTA 
in the millimolar concentrations specified. 
(A) Quick contraction elicited by free cal- 
cium after loading. (B) Interruption of 
quick contraction by high concentration of 
EGTA. (C) Absence of quick contraction 
in unloaded fiber. 

Fig. 2 (bottom left). Chloride-induced con- 
tractions of skinned muscle fibers. Arrows 
indicate solution changes; C1 120 solutions 
contained 120 mM chloride in place of 
propionate, and Mg 6 solutions contained 
6mM MgCl2 in place of 1 mM MgCl2. 
All fibers were loaded with calcium be- 
fore exposure to chloride. (A) Quick 
contraction elicited by chloride. (B) Inter- 
ruption of contraction by high concentra- 
tion of EGTA. (C) Course of contraction 
not influenced by subsequent removal of 
chloride. (D) Attenuated contraction ob- 
tained in the presence of 6 mM magnesi- 
um (1 mM ionized magnesium plus 5 mM 
MgATP). 

both were due to a transient rise in the 
concentration of calcium in the space 
that contains the myofilaments, and that 
this calcium was derived from an inter- 
nal source which had been preloaded. 
The contraction produced by a sudden 
rise in the concentration of chloride is 
believed to result from a change in 
electrical potential across the internal 
membranes (1,0). The contraction in- 
duced by calcium, on the other hand, 
seems to be initiated by a reaction of 
this ion with the internal membranes, 
for the response occurred in either chlo- 
ride or propionate and was elicited by 
concentration changes of only 10-4M. 
Free calcium in the myofilament space 
therefore appears to trigger the release 
of internally stored calcium. 

In the presence of free magnesium 
(ImM), the contraction induced by 
calcium was abolished, whereas a brief 
twitch could still be induced by chlo- 
ride. This suggests that a small quantity 
of calcium is released by a change in 
the electrical potential across the inter- 
nal membranes, and when the concen- 
tration of magnesium ion is low, this 
calcium induces a larger liberation of 
calcium from internal stores. Thus the 
activation initiated by a change in elec- 
trical potential in this preparation ap- 
pears to be amplified by a regenerative 
release of calcium. 
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Simian Virus 40 in Polio Vaccine: 

Follow-Up of Newborn Recipients 

Abstract. Soon after birth, when sus- 
ceptibility to carcinogens should be en- 
hanced, a group of children received 
oral polio vaccine which was later 
found to contain significant amounts of 
simian virus 40. Eight years after the 
incident, no cancer deaths have been 
observed among the vaccinated chil- 
dren, but continued surveillance is 
needed before concluding that simian 
virus 40 is innocuous to man. 

The induction of cancer in labora- 
tory animals by simian virus 40 (SV 40) 
(1) has had unusual public health impli- 
cations. As an unrecognized contam- 
inant of virus vaccines prepared in 
monkey kidney cell cultures prior to 
1962 (1), SV 40 was given inadvertently 
with poliomyelitis and adenovirus vac- 
cines to a substantial number of per- 
sons. The possibility that SV 40 is 
oncogenic in man was further suggested 
by its capacity to cause subclinical in- 
fection when administered with either 
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Simian Virus 40 in Polio Vaccine: 

Follow-Up of Newborn Recipients 

Abstract. Soon after birth, when sus- 
ceptibility to carcinogens should be en- 
hanced, a group of children received 
oral polio vaccine which was later 
found to contain significant amounts of 
simian virus 40. Eight years after the 
incident, no cancer deaths have been 
observed among the vaccinated chil- 
dren, but continued surveillance is 
needed before concluding that simian 
virus 40 is innocuous to man. 

The induction of cancer in labora- 
tory animals by simian virus 40 (SV 40) 
(1) has had unusual public health impli- 
cations. As an unrecognized contam- 
inant of virus vaccines prepared in 
monkey kidney cell cultures prior to 
1962 (1), SV 40 was given inadvertently 
with poliomyelitis and adenovirus vac- 
cines to a substantial number of per- 
sons. The possibility that SV 40 is 
oncogenic in man was further suggested 
by its capacity to cause subclinical in- 
fection when administered with either 
attenuated (Sabin) or inactivated (Salk) 
polio vaccines (2) and by its capacity 
to produce cellular transformations sug- 
gestive of neoplastic growth in human 
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