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Abstract. In the developing mouse 
brain 40 percent of the labeled soluble 
protein found after injection of leu- 
cine-Cl4 consists of subunits with a 
molecular weight of 60,000 and with 
other characteristics of microtubular 
protein. This protein has a half-life of 
about 4 days. 

Microtubular protein binds colchicine 
(1, 2), is composed of subunits with 
a molecular weight of 60,000 (3), and 
is precipitable by vinblastine (4, 5). 
Brain and axoplasm contain significant 
amounts of this protein (1, 3), and 
there is evidence that microtubules 
participate in the rapid transport of 
proteins from the nerve cell body 
down the axon (6). 

Because of the abundance of this 
protein in brain and its probable im- 
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portance in axoplasmic transport (7), 
we have studied its synthesis and 
metabolism in the brains of developing 
and adult mice. 

Swiss albino mice, 1 or more days 
of age, were injected intracerebrally 
with 2 ,uc of L-leucine-l-C14 [30 mc/ 
mmole, New England Nuclear (8)]. 
After injection, the mice were decapi- 
tated, and the brains were removed 
and homogenized in 0.01M phosphate 
buffer, pH 6.5, containing 0.01M 
MgC12 and 0.24M sucrose. Soluble 
and particulate components were sepa- 
rated by centrifugation for 1 hour at 
100,000g. 

For determination of colchicine bind- 
ing activity (3), 1 to 2 mg of protein 
were incubated with 1 /Jc of colchicine- 
Ha3 (2 c/mmole, New England Nu- 
clear) and the mixture was filtered 
through DEAE-cellulose-impregnated 
filter paper (No. DE81, Whatman). For 
estimation of the molecular Weight, the 
proteins were disaggregated in 0.01M 
phosphate buffer (pH 6) containing 
0.1 percent sodium dodecyl sulfate and 
0.5M urea, reduced with 0.15M 
B8-mercaptoethanol, alkylated with 
0.02M iodacetamide, concentrated, and 
subjected to electrophoresis in 0.01M 
phosphate buffer, 0.1 percent sodium 
dodecyl sulfate (pH 6) (9, 10). Mi- 
gration in this system is proportional 
to molecular weight (11). 

Results of the above-mentioned pro- 
cedures were as follows. Approxi- 
mately 40 percent of the labeled pro- 
tein in the 100,000g supernatant from 
homogenized brains of 2- or 6-day-old 
mice which had received the intra- 
cerebral injection of leucine-1-C14 the 
day before was present as a single peak 
with a molecular weight of approxi- 
mately 60,000 (Fig. 1). One milli- 
gram of the supernatant protein bound 
about 72,000 counts of colchicine-H3 
per minute. Upon the addition of 
vinblastine (10-3M) to the super- 
natant a visible precipitate formed 
(4). This precipitate contained ap- 
proximately 35 percent of the total 
soluble protein and 98 percent of the 
colchicine bound to protein. Electron 
micrographs of negatively stained 
preparations of the precipitate showed 
the characteristic morphology of 
microtubular crystals (5, 12). Gel 
electrophoresis showed that the precip- 
itate contained the protein peak with 
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tated with vinblastine, addition of 
Coomassie blue revealed a deeply 
stained band of molecular weight 
60,000; also, three faint, closely 
spaced, narrow bands of very high 
molecular weight were detected; these 
were not substantially labeled with 
leucine-C14. When the initial vinblas- 
tine precipitate was dissolved by dialy- 
sis against phosphate buffer and precip- 
itated again with vinblastine and 
magnesium, these contaminants were 
no longer detectable. The purified pre- 
cipitate contained about 20 percent of 
the protein in the initial 100,000g 
supernatant and about 30 percent of 
the total incorporated leucine-C14. 

The microtubular protein repre- 
sented 30 to 40 percent of the labeled 
soluble protein in mice injected with 
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Fig. 1. Gel electrophoresis of protein in 
supernatant (100,000g) obtained from 
brain homogenates 24 hours after injec- 
tion of leucine-Ct4. Electrophoresis was 
conducted for 9 hours at 80 volts on poly- 
acrylamide gels. The untreated super- 
natant (top), the protein precipitated by 
vinblastine (middle), and supernatant 
protein remaining after vinblastine precipi- 
tation (bottom) were subjected to elec- 
trophoresis simultaneously. Markers for 
the molecular weight estimate were a 
mixture of nonreduced human 7y-globulin 
(165,000), bovine serum albumin (66,000), 
and hemoglobin monomers (17,000). 
These were subjected to electrophoresis 
simultaneously in a separate gel and local- 
ized by staining with Coomassie blue. 
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Fig. 2. Turnover of microtubule protein. 
Mice (5 days old) were injected intra- 
cerebrally with 2 ,uc of leucine-C4i; three 
were killed at each age indicated. The 
supernatant (100,000g) of the brain ho- 
mogenate was isolated, 0.2 mg of the 
supernatant was subjected to electro- 
phoresis, and the radioactivity (count/ 
min) in the fractions with a molecular 
weight of 60,000 was determined. Since the 
protein content of brain increased during 
the period studied, corrections were made 
for dilution of the labeled protein, and 
these corrected results are shown on the 
ordcnate. 

leucine-C-4 at 1 day, 3 days, 5 days, 
or 7 days after birth, and killed 1 day 
after injection. A peak of radioactive 
protein of identical molecular weight 
was detected in the particulate com- 
ponent of brain homogenates at 24 
hours and at longer times after the 
administration of labeled amino acid. 
This is consistent with the finding that 
a substantial portion of the colchicine- 
binding activity in brain is in the par- 
ticulate fraction (13). The turnover of 
the microtubular protein was esti- 
mated in mice injected with leucine- 
C14 at 5 days of age (Fig. 2). The 
half-life was approximately 4 days. In 
adult mice, the labeled protein with a 
molecular weight of 60,000 was also 
found 1 day after intracerebral injec- 
tion of leucine-C14. This peak repre- 
sented only about 15 to 20 percent of 
the total labeled soluble protein. Other 
studies with embryonic axolotl brain 
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grown in vitro and incubated for 3 
hours with leucine-C14 upon electro- 
phoresis of whole tissue homogenates 
(14) showed a highly labeled peak 
containing material with a molecular- 
weight of 60,000. 

Because of its abundance, rapid 
rate of synthesis and turnover, charac- 
teristic molecular weight, colchicine- 
binding activity, and vinblastine pre- 
cipitability, this brain protein should 
prove amenable to correlative studies of 
its metabolism and its role in brain 
function. 
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Self-Assembly of Qf/ and MS2 Phage Particles: 

Possible Function of Initiation Complexes 

Abstract. Four kinds of particles were reconstituted with RNA and protein 
from the genetically unrelated bacteriophages QfS and MS2, namely, two homolo- 
gous and two heterologous, with respect to RNA and protein. However, once Q/3 
RNA (or MS2 RNA) reacted with a few molecules of either Q/3 or MS2 protein 
to form a nucleoprotein complex (initiation complex), it formed a phagelike 
particle only with subsequent addition of the same protein. 
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Watson's (1) suggestion that such small 
viruses would possess cubic symmetry 
with the shape specifications residing 
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primarily in a single protein subunit. 
Self-assembly into virus-like ribonucleo- 
protein particles is possible in vitro (2). 
It does not appear that there is a great 
specificity as to the nucleic acid encap- 
sulated in vitro. Within the cell, how- 
ever, viral nucleic acid and viral protein 
interact with high specificity and effi- 
ciently produce infectious particles. Cel- 
lular assembly mechanisms may not in- 
volve free interaction between pools of 
nucleic acid and protein as in the case 
in vitro; alternatively there could be a 
highly controlled assembly coupled to 
mechanisms of synthesis of the com- 
ponent parts. We have sought experi- 
mental support for the latter possibility 
and have separated the process of en- 
capsulation in vitro into an RNA-pro- 
tein "initiation" stage, followed by a 
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