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Some Mathematical Models 
in Science 

Mark Kac 

The term model is used (and mis- 
used) in many ways. Few of us today, 
for example, would think of atomistic 
theory as a model. And yet not much 
more than 100 years ago it was pre- 
cisely that-a plausible model which ac- 
counted neatly for Dalton's laws govern- 
ing chemical reactions. Similarly the 
"gene hypothesis" in the early days of 
the century provided a model to account 
for Mendelian laws. 

Of course, as we all know, subsequent 
developments endowed both atoms and 
genes with a "reality" of their own, thus 
promoting the models of yesterday to 
the exalted positions of universally ac- 
cepted theories of today (1). 

Few models are that good or, for that 
matter, that lucky, and I deal in what 
follows with much less spectacular ones. 
Limitations of space allow only a cur- 
sory discussion of a very few models. 
The few were chosen to illustrate a vari- 
ety of ways in which models came into 
scientific thinking, but I make no claim 
to exhaustive coverage. I have naturally 
chosen the ones which I understand and 
with which I am familiar. They are my 
pet models. 

I limit myself also to mathematical 
models-that is, to models which can 
be described symbolically and dis- 
cussed deductively. "Nature," remarked 
Fourier, "is indifferent toward the dif- 
ficulties it causes a mathematician," and, 
because of this, mathematical models 
must of necessity be greatly simplified. 
There are, roughly speaking, two differ- 
ent types of models: (i) descriptive- 
that is, models designed to account for 
observed phenomena, and (ii) concept- 
ual-models constructed to elucidate 
delicate and difficult points of a theory. 
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Not always is it easy (or even desir- 
able) to draw a sharp dividing line be- 
tween the two types, but the extremes 
on both sides are clearly recognizable. 

Descriptive models are of particular 
interest to a working scientist, and they, 
too, 'fall into two distinguishable cate- 
gories, which,' for want of better termi- 
nology, I will call fundamental and ad 
hoc. 

If, for example, we disregard the mu- 
tual attraction of planets and look upon 
their motions as caused solely by the 
gravitational pull of the sun, we have a 
fundamental model of our planetary sys- 
tem. It is fundamental because it uses 
the inverse square law of attraction, 
which, barring small relativistic correc- 
tions, is the correct law, and it is only 
a model because it does neglect the in- 
teractions between planets. It is, by the 
way, an excellent model for, as is well 
known, it accounts for all three of Kep- 
ler's laws. 

Models of Hemoglobin 

Ad hoc models are the most com- 
mon; as a rule, they represent a formal- 
ization of a "working hypothesis" in a 
situation where a phenomenon studied 
is, at best, only partly understood. As 
an example, let me discuss briefly the 
dependence of the fraction (I) of oxy- 
genated hemoglobin on the concentra- 
tion of oxygen. 

A (hemoglobin) molecule is assumed 
to consist of n ( = 4) subunits arranged 
cyclically, and one further assumes that 
each subunit can be occupied or not 
occupied by a ligand, which is oxygen 
in the case of hemoglobin. 

Suppose thatp(+ 1) is the probabil- 
ity that a given subunit is occupied and 
that p(- 1)-that is, 1 -p(+ 1)-is 
the complementary probability. 

The ratio 

P(+ 1) 
p (-1) 

can be taken to be the measure of con- 
centration of oxygen. 

The simplest hypothesis is that sub- 
units are occupied independently, and 
in this case an elementary calculation 
shows that the average number of oc- 
cupied subunits per molecule is 

f 
1 +a 

(the Michaelis equation). The graph of 
f plotted relative to a (Fig. 1 ) does not 
fit experimental data, which have a 
pronounced sigmoidd" character (Fig. 2). 

So far so good. To explain the sig- 
moid character of the f-versus-a curve, 
three models have been proposed-one 
(the "MWC model") by Monod, Wy- 
man, and Changeux; the others by 
Koshlund, Nemethy, and Filmer and 
by Colin Thompson (2). The last two 
yield identical results, though the 
formulations appear to be different. 
Here I deal only with Thompson's 
treatment, using his presentation of the 
MWC model as well. 

If we write 

p (+ J)_ e p(_ l)= .+ e_ 
eJ + ej eJ + e- 

(so that a = e2j), the assumption of in- 
dependent occupancy can be stated as 
follows: 

p (A1 21 n) eJtt eTA2 - .. eTn 4 -+ 

(eJ + eJ) 

Here P (btj, . . , u) is the probability 
of occurrence of the configuration 
(J/1 I *.. * 1n); + 1 stands for an oc- 
cupied subunit and -1, for an un- 
occupied one. 

The MWC model assumes in effect 
that the molecule can exist in two 
states (R and T) described by the 
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parameter ?; R corresponds to e = 1 
and T, to e = 0. 

The "occupancy configuration" is 
now described by (t, tt2, I ? . I tn; O) 

-a symbol that describes which sub- 
units are occupied (the it's) as well as 
the state of the molecule (?). 

The basic assumption of the MWC 
model is, then, 

P (Alt, ... u;e 
e ejul ejIU2.. . ejun + L (1-e) e`g ... .eJ'l, 

A 
where L is interpreted as the equilib- 
rium ratio of the T and R states and 
Z is the normalizing factor needed to 
make the probabilities of occurrence 
of all configurations add up to 1. 

If one now sets 

e Ca(a = e) 

and 

L =LC-n2 

it is a simple matter to obtain the 
MWC result 

a (1 + a)"1 + Lc (L + Ca)"' 

(1+a) + Lc (L + ca)" 

(remember that for hemoglobin n = 4). 
It is perhaps worth noting that it is 

somewhat misleading to interpret the 
MWC assumption for P as implying 
that a molecule can exist in two states 
and that in each state the subunits can 
be occupied independently. If this were 
so we would obtain 

fz P + 
Ca 

+ a + I+Ca 

where P and Q are the probabilities of 
finding the molecule in the states R and 
T, respectively (3). 

The Thompson model (taking a cue 
from models of cooperative phenom- 
ena in the theory of magnetism) as- 
sumes 

P (Al1 A2~ . . nt) 

eu llq eW12e .3 . eu~ n-11ne8pln eat . . . e. 
ln 

where U (> 0) is a parameter which 
measures the degree of "cooperativity" 
between neighboring subunits and Z is 
an appropriate normalizing factor. 

The calculation is now a little more 
difficult, though well known to all 
familiar with the so-called one-dimen- 
sional Ising model. 

The result is 

where 

K e-+u 

and 

= [(a -1 )2 + 4te-4U]V/2 

Taking U = 0.55, and, of course, n- 
4), we obtain an extremely good fit of 
experimental data. 

Which of the models is "right"? This 
question lies outside mathematics, and 
it is not certain whether it can be an- 
swered at all in any sensible way. 

If any moral is to be drawn from 
our discussion it is that the "sigmoid- 
icity" of the f-versus-ao curve can be 
accounted for by a number of models 
(at least two!) none of which clearly 
violates any of the sacred principles 
of chemistry. 

If one takes dogmatically Mach's 
view that "economy of thought" is the 
determining criterion for choosing 
among competing theories or models, 
then the Thompson model (or, equiva-- 
lently, the model of Koshlund et al.) 
wins over the MWC model, since it 
uses only one parameter (U), whereas 
the MWC model requires two (L and 
c). Nature, however, has been known 
to be "uneconomical," and perhaps, 
until more chemical clues become 
available, we will have to be content 
with quoting from a poem by Thomas 
Gray: "Where ignorance is bliss, 'tis 
folly to be wise." 

An Adapting Automaton 

Let me now turn to an entirely dif- 
ferent type of ad hoc model. 

The experimental background is as 
follows. A human observer placed be- 
fore a radarscope is told to watch for 
a possible signal at a certain point on 
the screen. The experimenter decides 
at random to send or not to send a 
signal, the probability of his sending 
one being p. At specified times the 
observer is asked whether the signal 
is present or not; he is told whether 
the answer was right or wrong, and 
his "betting average" is calculated. The 
reason for the observer's uncertainty 
is the presence of random noise which, 
when the signal is sufficiently weak, 
interferes with perfect delectability. 

I~a (I a~a"- l+2K 
a- 2+ O +a-01- 

~a 
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The observer can commit two kinds 
of errors: (i) he will mistake a noise 
peak for the signal ("false alarm"), and 
(ii) he will fail to detect the signal 
when it has actually been sent (with 
possibly catastrophic implications when 
the game is "for real"); the "betting 
average" is the weighted mean (with 
weights q = 1 - p and p, respectively) 
of the two possibilities. 

Let us now postulate an "ideal ob- 
server" (4) who, first of all, knows the 
probability density Pl(x) of noise alone 
and the probability density P2(x) of 
noise plus signal (Fig. 3). He also is 
assumed to know the probability p of 
the signal's being sent, and, being 
"ideal," he naturally wants to minimize 
the overall probability of committing 
an error. 

A simple calculation shows that the 
optimum criterion is the following. If 
the deflection x on the radarscope satis- 
fies the inequality 

qP1(x) -pP2(x) < 0 

the ideal observer should say that the 
signal is present, and if 

qP1(x) - pP2(x) > 0 

he should say that the signal is not 
present. 

If the density functions P1 and P2 
are such that there is a unique solution 
O of the equation 

qP1(x) pP2(x) 

then the optimum criterion given above 
is of the "threshold type"; that is, the 
observer should say "Yes" if x> 0; he 
should say "No" if x < 0. 

Under these circumstances the mini- 
mum probability of error is 

0 

p - [pP(x) - qP2(x)] dx 
9 

Now, the interesting and somewhat 
surprising thing is that a human ob- 
server after a period of training per- 
forms nearly as well as the ideal ob- 
server-that is, he too achieves the 
near-optimum (the minimum) prob- 
ability of misguessing. 

The surprise is, however, diminished 
if we realize that an extremely simple 
automaton can also perform optimally. 

The automaton simply sets an arbi- 
trary threshold 01 and says "Yes" if 
X1 > 01 and "No" if xl < Oi. If the 
answer is right, the threshold is kept 
for the next reading. If, however, the 
answer is wrong, the 'threshold is 
changed by + A or -A, depending on 
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Fig. 1. The fraction (f) of oxygenated 
hemoglobin plotted relative to the concen- 
tration (a) of oxygen under the Michaelis 
assumption. 

the kind of error. In this way a second 
threshold 02 is obtained, and the proc- 
ess is repeated over and over again. 

The general rule is as follows: 0.+1 
equals On if the answer at the nth 
stage was correct; it equals Osn + A if 
the error at the nth stage was of type i; 
and it equals On - A if the error at the 
nth stage was of type ii. 

The automaton does not know it, 
but it performs what is known as a 
"random walk" with transition prob- 
abilities 

00 

P (0.+-= O + A) = q fPI(x)dx 

On 

On 

P(+1= On -A)=P fP2(x) dx 

0 

P(On+1 = On) = 
On 00 

1- i P2(x) dx- q P1(x) dx 
o d n 

It may be easily seen that no matter 
what On is, the probability that it will 

move toward 6 is greater than the prob- 

ability that it will move away from 0. 
Thus 0 exerts a kind of attraction, 

and it is highly probable (this can be 
shown by a mathematical analysis) that 
the successive thresholds will all tend 
to be close to 0; thus a near optimum 
performance (5) is achievable (fluctua- 
tions around 0 are unavoidable owing 
to the fact that A\ is of nonzero size). 
As with all probabilistic models, there 
is always a possibility of the automa- 
ton's going haywire and running away. 

7 NOVEMBER 1969 

Unpleasant as it may be to have to 
acknowledge that we cannot exclude 
such erratic behavior, we may console 
ourselves with the thought that neither 
can it be excluded in human observers. 

This model is not meant to be in 
any way indicative of the process by 
which human observers detect signals. 
In the light of more recent experiments 
(6), the very existence of sensory thresh- 
olds is apparently in some doubt. 
What the model does provide is a 
standard against which the perform- 
ance of human observers can be judged. 

The model also proves that simple 
automatons can be programmed for 
adaptation. Note that our automaton 
will approach optimum performance 
no matter what p, Pj1, and P2 are, as 
long as the equation 

pP2(x) = qP(x) 

has a unique solution. 
From the purely mathematical point 

of view the automaton merely solves 
the equation 

pP2(x) = qP1(x) 

by what is called the stochastic search, 
but it does it without knowing what 
equation it is supposed to solve! 

Does Entropy Never Decrease? 

Conceptual models, as I said at the 
beginning, are designed to elucidate 
difficult and delicate points of a theory. 

Though I have done it repeatedly on 
past occasions, let me once again dis- 
cuss the Ehrenfest urn ("dog flea") 
model. 

The model was designed to deal with 
the apparent paradoxes which plagued 
the kinetic theory of matter almost 
from its inception. 

Kinetic theory envisages matter as 
conservative dynamical systems of a 
vast number of degrees of freedom (a 
monoatomic gas, for example, is a 
system of 6N degrees of freedom where 
N is the number of molecules-that is, 
N = 6.06 x 1023 per mole). There are 
certain general theorems which such 
systems, when isolated, obey, one of 
them being the Poincare recurrence 
theorem to the effect that, unless one 
starts at t =0 with initial positions and 
momenta belonging to a small excep- 
tional set (in technical terminology the 
exceptional set is of measure zero on 
the energy surface), the system will re- 
turn over and over again arbitrarily 
close to the initial state. This "quasi-. 
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Fig. 2. The fraction (f ) of oxygenated 
hemoglobin plotted relative to the concen- 
tration (a) of oxygen as actually measured. 

periodic" behavior of isolated conserva- 
tive dynamical systems contradicts the 
approach to equilibrium-or, equiva- 
lently, the increase of entropy-which 
lies at the very basis of thermodynam- 
ics. It would thus seem that no logically 
consistent derivation of the laws of 
thermodynamics from a mechanistic 
viewpoint is possible. 

To resolve this intolerable state of 
affairs a deeper formulation of the laws 
of thermodynamics becomes necessary. 
This is achieved through the interven- 
tion of a statistical point of view, and 
the Ehrenfest model illustrates the sit- 
uation with remarkable simplicity and 
clarity. 

Imagine two urns, I and II, in which 
there are distributed 2R balls numbered 
consecutively from 1 to 2R. An integer 
from 1 to 2R (inclusive) is chosen at 
random, and the ball bearing that num- 
ber is moved from the urn in which 
it is to the other urn. The process is 
then repeated over and over again, the 
successive choices of integers being in- 
dependent of each other. 

Let P(nlm;s) denote the probability 

pi 

x 

Fig. 3. The probability density P1(x) of 
noise alone and the probability density 
P2(x) of signal plus noise. 
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Fig. 4. Approach to equilibrium of the 
Ehrenfest model in a digital-computer ex- 
periment. 

that m balls will be in urn I after s 
drawings if n balls were there origin- 
ally. One can calculate P(n I m;s) ex- 
plicitly, but the formula is unfortunate- 
ly quite complicated. It is easy, however, 
to calculate the average number of 
balls in urn I after s drawings, 
<m (s) >n, given that m(O) = n-that 
is, that one has started with n balls. 

The result is 
2R 

< (s) > 1 mP(n I M; s) = 

R + n(l - - 

which indicates that, on the average, 

one approaches equalization; in fact, 
the approach is exponential. 

On the other hand it is quite easy 
to prove that, with probability 1 (which 
does not mean absolute certainty), the 
initial state n is bound to recur over 
and over again, and this is a clear 
analog of the quasiperiodic behavior 
of dynamical systems. 

However, the average time (actually, 
the average number of drawings) be- 
fore state n recurs for the first time can 
be shown to be 

22R 

(2R) 
nJ 

which for n differing significantly from 
R (that is, far from equalization) is 
enormous. Over times very small com- 
pared to this enormous "Poincare cy- 
cle," but still very large compared with 
durations of ordinary experiments or 
even with the duration of life on our 
planet, the standard deviation of m(s) 
about its mean <rn (s) >n is negligibly 
small relative to the mean, so that, over 
such periods of time, we shall observe 
exponential equalization even though 
over much, much longer periods the 
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process is fundamentally quasiperiodic 
(7). 

With the help of high-speed com- 
puters one can actually test the model. 

Figure 4 is an "experimental graph" 
obtained with 2R= 16,384=214 balls 
with n = 2R (that is, as far away from 
equalization as possible) and with s 
running from 1 to 200,000 (such a 
run takes less than 2 minutes!). 

The early part of the graph is a 
nearly perfect exponential. 

This "experiment," incidentally, 
shows the commuter in a new role- 
that of providing "artificial reality" for 
testing conceptual models. 

Condensation in a 

One-Dimensional World 

Finally, let me discuss briefly a 
model which is partly realistic and 
partly conceptual. 

It is quite realistic to consider a gas 
as a dynamical system with molecules 
interacting through two body central 
forces. The intermolecular potential 
+(r) can be assumed (not unrealisti- 
cally) to be infinite for 0 < r< 8 (hard- 
core assumption makes it impossible 
for the molecules to come closer than 
8 from each other) and to be negative 
for r > S. It is also necessary to as- 
sume that p(r) > 0 sufficiently rapidly, 
as r -e oo, and at the very least that 

00 

fr2q(r)dr 

be finite. _ 

If the molecules are at rl, r2, . . . 

rn, the potential energy is 

E-=- Pd (I r, -ril 

where | - rI denotes the length of 

the vector ri - rj. 
If our gas is in equilibrium at abso- 

lute temperature T, statistical mechan- 
ics provides us with a recipe for cal- 
culating its equation of state. 

The recipe is as follows. Set 

ZNQ(V) = N ... 
f 

el/7T dr, ... dry 

i) being the container of volume V, 

and each integration (with respect to 

dr1, dr2,...) being triple (k is the 
Boltzmann constant). 

Under appropriate conditions on 0, 
one then shows that, as N and V ap- 
proach infinity in such a way that the 
specific volume v = V/N remains con- 
stant, the limit 

I __ g(v, T) 
lim logZN (V) kT 

exists. The function i(vT), defined by 
the above limit, is the familiar free 
energy (per molecule), and pressure is 
then given by another familiar formula 
-namely, 

P=- 
- v 

This is the equation of state. 
One of the outstanding (and largely 

unsolved) problems is that of proving 
that, below a certain critical tempera- 
ture, the isotherm has a flat part cor- 
responding to coexistence of gaseous 
and liquid phases (the problem of con- 
densation). 

The problem simplifies greatly in one 
dimension. In fact, if exponential at- 
traction-that is, 

b(r) = aye-'Yr, r > 5(5 > 0) 

-is assumed while the hard-core as- 
sumption [0(r)= oo. 0 < r < SI is main- 
tained, the exact equation of state can 
be calculated in terms of the largest 
eigenvalue of a certain integral equa- 
tion (y is a parameter whose reciprocal 
is a measure of the range of the attrac- 
tive potential). For y > 0, all isotherms 
are analytic and the model does not ex- 
hibit condensation. But in the limit y -> 0 
(weak long-range forces) one obtains 
rigorously the van der Waals equation 
with the so-called Maxwell construc- 
tion (below the critical temperature) 
which gives the flat (horizontal) part 
of the isotherm (8). 

Moreover, as shown recently by Dy- 
son (9), if the attractive part of the 
potential is a linear combination of 
exponentials-that is, if 

00 

p (r) =-L oeke 

1 

where the ark and cry are positive con- 
stants and 

00 
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diverges with sufficient rapidity, then 
the one-dimensional model will exhibit 
condensation without the artifact of an 
extra limiting process (ye- 0). 

These models are realistic insofar as 
we use more or less realistic interac- 
tions and fundamental inasmuch as we 
follow the strict dicta of statistical me- 
chanics. They are conceptual and ad 
hoc, because, after all, there are no 
one-dimensional gases. Still, the study 
of such models has been most profit- 
able, especially since it throws con- 
siderable light on the mathematical 
mechanisms which may be responsible 
for the phenomenon of condensation. 

Conclusion 

Models are, for the most part, cari- 
catures of reality, but if they are good, 
then, like good caricatures, they por- 
tray, though perhaps in distorted man- 
ner, some of the features of the real 
world. 

The main role of models is not so 
much to explain and to predict- 
though ultimately these are the main 
functions of -science-as to polarize 
thinking and to pose sharp questions. 
Above all, they are fun to invent and 
to play with, and they have a peculiar 
life of their own. The "survival of the 
fittest" applies to models even more 
than it does to living creatures. They 
should not, however, be allowed to 
multiply indiscriminately without real 
necessity or real purpose. 

Unless, of course, we all follow the 
dictum, attributed to Oswald Avery, 
that "you can blow all the bubbles you 
want to provided you are the one who 
pricks them." 
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Aquatic Weeds 

The rampant quality of aquatic weeds has become one of 
the symptoms of our failure to manage our resources. 

L. G. Holm, L. W. Weldon, and R. D. Blackburn 

In the evolution of the city as a habi- 
tat, in the conversion of virgin lands to 
intensified farming, and in the alteration 
of watercourses with locks, dams, and 
reservoirs, man is the interloper. At his 
behest the natural order of things is set 
aside. As a result of his activities and 
their byproducts, new species and num- 
bers of weeds, rodents, insects, and dis- 
eases appear where they could not, or 
did not, exist before. One of our price- 
less treasures, fresh water, is changed 
as civilization draws near. Its quality 
usually becomes poorer; it is seldom im- 
proved by man. Communities, planned 
and unplanned, locate on the water's 
edge to use navigation routes, irrigate 
land, and develop power. As a result the 
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watercourses are heated, polluted, and 
fertilized; the levels fluctuate, and new 
biological pests are introduced because 
of man's commerce and mobility. 

Several "explosions" of aquatic weeds 
in the great rivers and lakes of the 
warm regions of the world have forced 
us to recognize the power of such in- 
festations. They destroy fisheries, inter- 
fere with hydroelectric and irrigation 
schemes, stop navigation, and bring 
starvation and disease problems to riv- 
erine communities. The rapid growth of 
weed infestations has been both spec- 
tacular and frightening, and the public- 
ity devoted to several of these problems 
in the past decade has made us aware 
that something is wrong. 

Aquatic weeds obstruct water flow, 
increase evaporation, cause large losses 
of water through transpiration, and pre- 
vent proper drainage of land. Weeds 
may interfere with navigation, prevent 
fishing and recreation, depress real es- 
tate values, and present health hazards. 
In the western United States, Timmons 
(1) showed that 17 states lost 1,966,000 
acre-feet of irrigation water annually 
because of aquatic and ditchbank weeds. 
This water, valued conservatively at $20 
per acre-foot, is worth $39,230,000 (2). 
This is enough water to irrigate 132,000 
to 315,000 hectares of cropland. In the 
United States there never has been an 
evaluation of the total nonagricultural 
losses due to aquatic weeds. It is certain 
that this loss, too, would be very high. 

The aquatic environment is complex 
and is of interest to scientists in several 
disciplines. The management of aquatic 
vegetation is not a new science, but 
rather an old field of botany that has 
been recently revitalized because of in- 
creased demand on our fresh waters and 
the exponential growth in problems 
caused by aquatic vegetation. 
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