values in all phases of the experiment.

During intertrial intervals, the disk was dark and the loudspeaker emitted noise. As a trial began, one of the seven tones replaced the noise, and one of the seven lights illuminated the disk. If the bird did not peck the disk, these stimuli went off after 1.2 seconds. If the bird pecked, the stimuli went off for the remainder of the 1.2-second period and noise resumed. After an intertrial interval of from 1 to 1.5 seconds, randomly chosen, a new stimulus combination appeared. After reinforced trials, the intertrial interval was extended to 3.5 seconds; it was also extended 0.6 second beyond any peck that occurred when the disk was dark. A LINC computer controlled the experiment and recorded the pigeons' responses.

The experiment passed through seven phases. The birds were run for (i) 30 days on the base-line auditory-visual discrimination, (ii) 7 days with the visual stimulus constant at its reinforced value, 582 nm, (iii) 4 days on the base-line conditions, (iv) 11 days with the auditory stimulus constant at its reinforced value, 3990 hz, (v) 13 days on the base-line conditions, (vi) 8 days without any sessions, the birds being fed enough in their home cages to keep their weight constant, and (vii) 4 days on the base-line conditions. The birds' responses on all reinforced trials and also their responses on the first series (49 test trials) from each session were excluded from the data reported below.

Figure 1 shows data collected from one bird just before each stimulus was held constant, during the constant conditions, and just after each return to two-dimensional testing. The other two birds produced similar data, though one bird had a consistently poorer discrimination on both stimulus dimensions. Panels A and D show the base-line twodimensional discrimination performance. It is clear that on almost all trials the bird must have "attended to" both the visual and the auditory stimuli. This can be seen by considering responses at the two margins of the stimulus matrix along which one stimulus varies while the other is at its reinforced value; these are plotted on the "walls" of the three-dimensional graphs in Fig. 1. On each of these margins in panels A and D, the response percentage goes from about 95 to 10 percent, or less. Since each dimension alone controlled almost the maximal response change, we conclude that (by definition) each dimension was "attended to." ("Perfect attention" would be assured if a stimulus dimension controlled responding over the range of 0 to 100 percent. This observation is a sufficient though not a necessary condition for "attention.")

Figure 1B shows the last 2 days during which the visual stimulus remained constant at its reinforced value. When this curve is compared with the corresponding margin in panel A, it is seen that control by the auditory stimulus has sharpened considerably. On the first day of return to two-dimensional testing, the sharpened auditory control was largely maintained, while visual control suffered severely (Fig. 1C). After 4 days on the two-dimensional procedure, however, the initial baseline performance was almost regained (Fig. 1D). Somewhat better visual control was attained during the auditoryconstant procedure; the last 2 days of this appear in panel E. The first day of return to two-dimensional testing after the auditory-constant procedure (Fig. 1F) shows an almost complete loss of control by the changes in the auditory stimulus. This control was only slowly regained; after 13 days it was still somewhat worse than in the earlier base-line sessions. Figure 1 does not show the results of the 8-day rest period. After this break in experimentation, both visual and auditory control were somewhat poorer than the previous base-line performance, but the effects on each were much less than the effects of constant stimulus training. As with the other effects reported here, the magnitude of these changes might have been affected by the order in which the procedures were run, but the birds had such prolonged and varied experience with the stimuli that this seems unlikely.

One account of the results might run as follows. In the base-line condition, slight differences among visual and auditory stimuli control the bird's response and both these classes of stimuli occasion intense analytic activity ("attention"). When only one visual or auditory stimulus appears, and hence this stimulus class is uncorrelated with reinforcement, analysis of these stimuli diminishes. Analysis only gradually resumes when both classes of stimuli are again correlated with reinforcement. This is not the only possible account of these results, and, even if they retained the basic idea, various theorists might alter or reword it in various ways (3) that cannot be detailed here.

However, a few points of theoretical relevance may be suggested. First, it would be difficult to interpret the effect of constant training as the extinction of an overt observing response. The tone stimulus "filled" the chamber, while the visual stimulus was always on the key when the pigeon pecked. Observations of the birds revealed no significant changes in gross behavior during the experiments. Second, there is some suggestion here of a trading relation between visual and auditory control. Most noticeably, auditory control got better after visual constant training, and worse again on return to two-dimensional training (right margin, Fig. 1, A–D). Third, the results appear to separate the "salience" of the two sets of stimuli from their "discriminability." Auditory control was not as complete as visual in the two-dimensional tests (Fig. 1, A and D); it was lost more completely (Fig. 1F) and regained much more slowly than visual control. Yet, under the present conditions these auditory stimuli were differentiated more accurately than were the visual stimuli (Fig. 1, B and E).

DONALD S. BLOUGH

Department of Psychology, Brown University,

Providence, Rhode Island 02912

References and Notes

- 1. D. R. Thomas, in Animal Discrimination Learning, R. M. Gilbert and N. S. Suther-land, Eds. (Academic Press, New York, 1969), p. 28. A. M. Treisman, Brit. Med. Bull. 20, 12
- 1969), p. 20.
 A. M. Treisman, Brit. Mea. Land. (1964).
 R. M. Gilbert and N. S. Sutherland, Eds., Animal Discrimination Learning (Academic Press, New York, 1969); N. J. Mackintosh, Psychol. Bull. 64, 124 (1965); T. Trabasso and G. H. Bower, Attention in Learning (Wiley, New York, 1968).
 Supported in part by PHS grant MH-02456.

9 July 1969

Protein Subunits:

A Table (Second Edition)

A table containing a list of proteins in which subunits are held together by noncovalent bonds was published in Science $2\frac{1}{2}$ years ago (1). The wide response from readers indicates that this table was useful for research and teaching purposes. It seems appropriate, therefore, to prepare a revised edition which includes new listings as well as changes that are required to bring the earlier entries up to date.

Decisions with regard to the entries in Table 1, as well as choices of references, have been based on the same criteria described previously (1).

Table 1. Subunit constitution of pro	teins.
--------------------------------------	--------

	Molecular weight	Subunits			Malamlar	Subunits		
Protein		No.	Molecular weight	Protein	weight	No.	Molecular weight	
Insulin (2)	11,466	2	5,733	Formyltetrahydrofolate synthe-				
Thrombin (3)	31,000	(3)	(10,000)	tase (58)	230,000	4	58,000	
β -Lactoglobulin (4)	35,000	2	17,500	Catalase (59)	232,000	4	57,500	
Rhodanese (5)	37,000	2	18,500	Pyruvate kinase (60)	237,000	4	57,200	
Bovine growth hormone (6)	48,000	2	25,000	Anthranilate synthetase complex (61)	240,000	6	40,000	
Neurospora malate dehydrogenase (7)	54,000	4	13,500	Glucose-6-phosphate dehydrog-				
Hemoglobin (8)	64,500	4	16,000	enase (62)	240,000	6	43,000	
Thiogalactoside transacetylase (9)	65,300	2	29,700	Phytochrome (63)	252,000	6	42,000	
Rat liver malate dehydrogenase (10)	66,300	2	37,500	Phycocyanin (64)	266,000	2	134,000	
O-Acetylserine sulfhydrylase A (11)	68,000	$\overline{2}$	34.000		134,000	4	28,000	
Tropomyosin B (12)	68.000	2	33,500	Glycollate oxidase (65)	270,000	2	140,000	
Avidin (13)	68.300	4	18.000	Mitochondrial adenosine triphos-			,	
Concanavalin A (14)	71,000	4	17,500	phatase (66)	284.000	10	26.000	
Glycerol-1-phosphate_dehydro-	11,000	•	11,000	Cysteine synthetase (67)	309.000	1	160,000	
genase (15)	78 000	2	40 000		,	2	68,000	
Uridine diphosphogalactose	70,000	-	40,000	Aspartyl transcarbamylase (68)	310 000	2	100,000	
4-enimerase (16)	79.000	2	30 000	rispurtji transcurbanijiase (00)	510,000	2	50,000	
Alkaling phosphatase (17)	80,000	วิ	40,000		100.000	2	33,000	
$C_{reatine}$ kinese (12)	80,000	ว้	40,000		50,000	2	17,000	
Liver clockel debudregenese (10)	80,000	2	40,000	Apotopostata departaryulara (60)	240,000	5	62,000	
Liver alconol denydrogenase (19)	80,000	4	20,000	Acetoacetate decarboxylase (09)	340,000	0	62,000	
$ \begin{array}{c} \text{Yeast aldolase } (20) \\ \text{Evalue } (21) \\ \end{array} $	80,000	2	40,000	\mathbf{A} = \mathbf{A} = (70)	62,000	2	29,000	
Enolase (21)	82,000	2	41,000	Arachin (70)	345,000	2	180,000	
Haptoglobin 1–1 (22)	85,000	2	40,000		180,000	6	30,000	
Procarboxypeptidase (23)	87,000	1	34,500	Phosphorylase A (71)	370,000	4	92,500	
		2	25,000	Lipovitellin (72)	400,000	2	200,000	
Firefly luciferase (24)	92,000	2	52,000	Phosphoenolpyruvate carboxytrans-				
Methionine-transfer RNA				phosphorylase (73)	430,000	(3-4)	(120,000)	
synthetase (25)	96,000	2	48,000	Fatty acid synthetase (74)	450,000	2	230,000	
α -Amylase (26)	97.600	2	48,200	Apoferritin (75)	480,000	20	24,000	
Aspartate aminotransferase (27)	100,000	2	50.000	Urease (76)	483,000	6	83,000	
Hexokinase (28)	102,000	4	27,500	Fraction 1 protein, carboxydismu-	,,	-	,	
Hemerythrin (29)	108,000	8	13 500	tase (77)	515,000	24	22.000	
Spinach leaf aldolase (30)	120,000	4	30,000	Myosin (78)	468,000	2	212,000	
Tyrosinase (31)	128,000	· 7	32,000	Myoshi (70)	400,000	2-3	20,000	
C Pagative protein (22)	120,000	4	32,000	e Galactoridara (70)	520.000	2-3	120,000	
Erustage dinhambatana (22)	129,000	0	21,500	p-Galaciosidase (79)	120,000	24	130,000	
Fluctose diphosphatase (55)	130,000	2	29,000	Clutoming synthetese (90)	130,000	3-4	(40,000)	
		2	37,000	Glutamine synthetase (80)	592,000	12	48,500	
Mammary glucose-6-phosphate				Pyruvate carboxylase (81)	660,000	4	165,000	
dehydrogenase (34)	130,000	2	63,000		165,000	4	45,000	
Ornithine amino transferase (35)	132,000	4	33,000	Thyroglobulin (82)	669,000	2	335,000	
L-Amino acid oxidase (36)	135,000	2	70,000	Propionyl carboxylase (83)	700,000	4	175,000	
Glyceraldehyde-3-phosphate				α -Crystallin (84)	810,000	(30)	26,000	
dehydrogenase (37)	140,000	2	72,000	Arginine decarboxylase (85)	850,000	5	165,000	
	72,000	2	37,000		165,000	2	85,000	
Mouse nerve growth factor			·	RNA polymerase (86)	880,000	2	440,000	
protein (38)	140,000	4-6	30.000	Lipoic reductase-transacetyl-			,	
Tartaric acid dehydrase (39)	145.000	4	39.000	ase (78)	1,600,000	60	27.000	
Lactic dehydrogenase (40)	150,000	4	35,000	Glutamic dehydrogenase (88)	2.000.000	8	250.000	
(11)	35,000	2	18,000		250,000	5	50,000	
Pyridoxamine pyruvate trans-	22,000	-	10,000	Hemocyanin (89)	300 000-		385,000	
aminase (41)	150.000	4	38 000		9,000,000		70,000	
Veast alcohol dehydrogenase (42)	150,000	4	37,000		>,000,000		35,000	
Cerulonlasmin (43)	151 000	- 0	12 000	Chlorocruorin (90)	2 750 000	12	250,000	
Truntophan sumthatasa (11)	150,000	0	10,000	Bromagrass mossie virus (01)	2,750,000	120	230,000	
Tryptophan synthetase (44)	139,000	2	49,500	Turnin vallour massie virus (91)	4,600,000	160	20,000	
Nr - 1 - 11-1- (45)	1 60 000	2	29,500	Palianeralitie arises (02)	5,000,000	150	21,000	
Muscle aldolase (45)	160,000	4	40,000	Poliomyenus virus (93)	5,500,000	130	27,000	
Cystathionine γ -synthetase (46)	160,000	4	40,000	Cucumber mosaic virus (94)	6,000,000	185	21,500	
Threonine deaminase (47)	160,000	4	40,000	Alfalfa mosaic virus (95)	7,400,000	160	35,000	
Carboxylesterase (48)	167,000	2	85,500	Liver acetyl coenzyme A carboxy-				
Thetin homocysteine methyl-				lase (96)	8,300,000	2	4,100,000	
pherase (49)	180,000	3-4	50,000		4,100,000	10	409,000	
Histidine decarboxylase (50)	190,000	10	19,000	Bushy stunt virus (97)	9,000,000	120	60,000	
Fumarase (51)	194,000	4	48,500	Potato virus X (98)	35,000,000	650	52,000	
Salmonella threonine deaminase (52)	194,000	4	48,500	Tobacco mosaic virus (99)	40,000.000	2130	17.500	
Phosphoenolpyruvate carboxylase (53)	198.000	4	49,200					
Plasma high-density lipoprotein (54)	210.000	4	28,000		T	RVING	KIOT?	
Phosphoribosyl adenosine triphos-		r	-0,000		1	T DETTY	TI INLUIZ	
nhate: nyronhosphate phosphorib				Biochemistry Division, Department of Chemistry,				
osvl transferase (55)	215 000	6	36.000	Northwestern University Evans	ton. Illinoi	is 60201	1	
Tryptonhanase (56)	220,000	2	110 000	_ State State Charles States			D	
rispiophanase (50)	110,000	2	55 000		DEN	NIS W.	DARNALL	
Paramyosin (57)	220,000	ź	110,000	Department of Chemistry. Nev	v Mexico	State		
Laraniyushi (J/)	220,000	4	110,000	, , , , , , , , , , , , , , , , , , , ,				

References

- I. M. Klotz, Science 155, 697 (1967).
 D. Crowfoot, Proc. Roy. Soc. London A164, 580 (1938); L. S. Moody, dissertation, University of Wisconsin (1944); D. F. Waugh, Advan. Protein Chem. 9, 325 (1954).
 J. A. Gladner, K. Laki, F. Stohlman, Bio-chim. Biophys. Acta 27, 218 (1958); C. R. Harmison, R. H. Landaburu, W. H. Seegers,

3 OCTOBER 1969

- J. Biol. Chem. 236, 1693 (1961); E. E. Schrier, C. A. Broomfield, H. A. Scheraga, Arch. Biochem. Biophys. I (suppl.), 309 (1962); L. Lorand, W. T. Brannen, Jr., N. G. Rule, *ibid.* 96, 147 (1962); D. J. Winzor and H. A. Scheraga, *ibid.* 104, 202 (1964).
 4. H. B. Bull, J. Amer. Chem. Soc. 68, 745 (1946); R. Townend and S. N. Timasheff, *ibid.* 79, 3613 (1957).

Department of Chemistry, New Mexico State University, Las Cruces 88001

- M. Volini, F. DeToma, J. Westley, J. Biol. Chem. 242, 5220 (1967).
 H. Edelhoch, P. G. Condliffe, R. E. Lippoldt, H. G. Burger, *ibid.* 241, 5205 (1966).
 K. D. Munkres, Biochemistry 4, 2180 (1965); *ibid.*, p. 2186.
 G. Braunitzer, K. Hilse, V. Rudloff, N. Hil-schmann, Advan. Protein Chem. 19, 1 (1964).
 J. L. Brown, D. M. Brown, I. Zabin, J. Biol. Chem. 242, 4254 (1967).

- 10. K G. Mann and C. S. Vestling, Biochemistry 8, 1105 (1969). 11. M. A. Becker, N. M. Kredich, G. M. Tom-
- Kins, J. Biol. Chem. 244, 2418 (1969).
 A. Holtzer, R. Clark, S. Lowey, Biochemistry
 4, 2401 (1965); J. Olander, M. Emerson, A. 12.
- Holtzer, J. Amer. Chem. Soc. 89, 3058 (1967); E. F. Woods, J. Biol. Chem. 242, 2859 1967)
- 13. N. M. Green, Biochem. J. 92, 16c (1964);
- try 6, 3801 (1967).
 15. G. Pfleiderer and F. Auricchio, Bioch Biophys. Res. Commun. 16, 53 (1964); Biochem. C. Deal and W. H. Holleman, Fed. Proc. 23,
- 264 (1964).

- C. Deal and W. H. Holleman, Fed. Proc. 23, 264 (1964).
 D. B. Wilson and D. S. Hogness, J. Biol. Chem. 244, 2132 (1969).
 A. Garen and C. Levinthal, Biochim. Biophys. Acta 38, 470 (1960); M. J. Schlesinger, Brookhaven Symp. Biol. 17, 66 (1964).
 D. M. Dawson, H. M. Eppenberger, N. O. Kaplan, J. Biol. Chem. 242, 211 (1967); P. M. Bayley and A. R. Thomson, Biochem. J. 104, 33c (1967).
 H. Theorell and A. D. Winer, Arch. Biochem. Biophys. 83, 291 (1959); T. K. Li and B. L. Vallee, Biochemistry 3, 869 (1964); D. E. Drum, J. H. Harrison, T. Li, J. L. Bethune, B. Vallee, Proc. Nat. Acad. Sci. U.S. 57, 1434 (1967); F. J. Castellino and R. Barker, Biochemistry 7, 2207 (1968).
 C. E. Harris, R. D. Kobes, D. C. Teller, W. J. Rutter, Biochemistry 8, 2442 (1969).
 J. A. Winstead and F. Wold, ibid. 3, 791 (1964); ibid. 4, 2145 (1965); J. M. Cardenas and F. Wold, ibid. 7, 2736 (1968).
 J. R. Brown, R. N. Greenshields, M. Yamasaki, H. Neurath, Biochemistry 2, 867 (1963).
 J. Travis and W. D. McElroy, ibid. 5, 2170 (1966).
 C. J. Bruton and B. S. Hartley, Biochem. J.

- (1966). C. J. Bruton and B. S. Hartley, Biochem. J.
- 25. C
- L. H. Bertland and N. O. Kaplan, Biochemistry 7, 134 (1968).
 A. Ramel, E. A. Barnard, H. K. Schachman, Angew. Chem. 76, 55 (1964); U. W. Kenkare and S. P. Colowick, J. Biol. Chem. 240, 4570 (1965); N. R. Lazarus, M. Derechin, E. A. Barnard, Biochemistry 7, 2390 (1968).
 J. W. Viots and S. Karaztas, Naux Biochemistry
- I. M. Klotz and S. Keresztes-Nagy, Biochem-istry 2, 445, 923 (1963).
- istry 2, 445, 923 (1963).
 30. G. Rapoport, L. Davis, B. L. Horecker, Arch. Biochem. Biophys. 132, 286 (1969).
 31. R. Zito and D. Kertesz, in Biological and Chemical Aspects of Oxygenases, K. Block and O. Hayaishi, Eds. (Maruzen, Tokyo, 1966), p. 290; S. Bouchilloux, P. McMahill, H. S. Mason, J. Biol. Chem. 238, 1699 (1963).
 32. E. C. Cacklich and G. M. Edelman, Proc.
- S. Masol, J. Biol. Contra Leo, 107 (1967).
 E. C. Gotschlich and G. M. Edelman, Proc. Nat. Acad. Sci. U.S. 54, 558 (1965).
 C. L. Sia, S. Traniello, S. Pontremoli, B. L. Horecker, Arch. Biochem. Biophys. 132, 325 (1977).
- (1969).
- 34. H. R. Levy, R. R. Raineri, B. H. Nevaldine, J. Biol. Chem. 241, 2181 (1966).
- C. Peraino, L. G. Burnville, T. N. Tahmisian, *ibid.* 244, 2241 (1969). A. de Kok and A. B. Rawitch, Biochemistry 36.
- 1405 (1969) 37. W. C. Deal and W. H. Holleman, Fed. Proc.

- 8, 1405 (1969).
 W. C. Deal and W. H. Holleman, Fed. Proc.
 23, 264 (1964); J. I. Harris and R. N. Perham, J. Mol. Biol. 13, 876 (1965); W. F. Harrington and G. M. Karr, *ibid.*, p. 885; R. Jaenicke, D. Schmid, S. Knof, Biochemistry 7, 919 (1968); V. D. Hoagland, Jr., and D. C. Teller, *ibid.* 8, 594 (1969).
 S. Varon, J. Nomura, E. M. Shooter, Biochemistry 7, 1296 (1968); A. P. Smith, S. Varon, E. M. Shooter, *ibid.*, p. 3259.
 R. E. Hurlbert and W. B. Jakoby, J. Biol. Chem. 240, 2772 (1965).
 E. Appella and C. L. Markert, Biochem. Biophys. Res. Commun. 6, 171 (1961); T. P. Fondy, A. Pesce, I. Freedberg, F. Stolzenbach, N. O. Kaplan, Biochemistry 3, 522 (1964); F. J. Castellino and R. Barker, *ibid.*, 7, 2207 (1968); D. B. Millar, V. Frattalli, G. E. Willick, *ibid.* 8, 2416 (1969).
 G. Pfleiderer and F. Auricchio, Biochemistry 7, 2946 (1968).
 G. Pfleiderer 203, 30 (1964).

- 43. C. B. Kasper and H. F. Deutsch, J. Biol. Chem. 238, 2325 (1963); M. D. Poulik, Nature 194, 842 (1962); W. N. Poillon and A. G. Bearn, in The Biochemistry of Cop-per, J. Peisach, P. Aisen, W. E. Blumberg, Eds. (Academic Press, New York, 1966), p. 525.
- p. 525.
 44. U. Henning, D. R. Helinski, F. C. Chao, C. Yanofsky, J. Biol. Chem. 237, 1523 (1962);
 B. C. Carlton and C. Yanofsky, *ibid.*, p. 1531; D. A. Wilson and I. P. Crawford, Bacteriol. Proc. 1964, 92 (1964); M. E. Goldberg, T. E. Creighton, R. L. Baldwin, C. Yanofsky, J. Mol. Biol. 21, 71 (1966).
 45. E. Stellwagen and H. K. Schachman, Biochemistry 1, 1056 (1962); W. C. Deal, W. J. Rutter, K. E. van Holde, *ibid.* 2, 246 (1963); H. K. Schachman and S. J. Edelstein, *ibid.*45. Zesl (1966); E. Penhoet, M. Kochman, Schalt (1966); E. Stellwagen and S. J. Edelstein, *ibid.*
- H. K. Schachman and S. J. Edestein, *ibit.* 5, 2681 (1966); E. Penhoet, M. Kochman, R. Valentine, W. J. Rutter, *ibid.* 6, 2940 (1967); C. L. Sia and B. L. Horecker, *Arch. Biochem. Biophys.* 123, 186 (1968); K. Kawahara and C. Tanford, *Biochemistry* 5, 1572 (1966). (1966). 1578

- 1578 (1966).
 46. M. M. Kaplan and M. Flavin, J. Biol. Chem. 241, 5781 (1966).
 47. H. R. Whiteley, *ibid.*, p. 4890.
 48. V. H. C. Benöhr and K. Krisch, Z. Physiol. Chem. 348, 1115 (1967).
 49. J. Durell and G. L. Cantoni, Biochim. Bio-phys. Acta 35, 515 (1959); W. Klee, *ibid.* 59, 562 (1962).
 50. W. D. Riley and E. E. Snell, Biochemistry 7, 3520 (1968).
- W. D. Riley and E. E. Snell, *Biochemistry 1*, 3520 (1968).
 L. Kanarek, E. Marler, R. A. Bradshaw, R. E. Fellows, R. L. Hill, J. Biol. Chem. 239, 4207 (1964).
 M. H. Zarlengo, G. W. Robinson, R. O. Burns, *ibid.* 243, 186 (1968).
 P. Moehe, and R. D. Sawal *ibid.* 244, 2549.
- 53. P. Maeba and B. D. Sanwal, ibid. 244, 2549 (1969).

- Burns, *ibid.* 243, 186 (1968).
 53. P. Maeba and B. D. Sanwal, *ibid.* 244, 2549 (1969).
 54. A. C. Cox and C. Tanford, *ibid.* 243, 3083 (1968); A. Scanu, W. Reader, C. Edelstein, *Fed. Proc.* 26, 435 (1967).
 55. M. J. Voll, E. Appella, R. G. Martin, J. Biol. Chem. 242, 1760 (1967).
 56. J. A. Hoch and R. D. De Moss, Biochemistry 5, 3137 (1966); Y. Morino and E. E. Snell, J. Biol. Chem. 242, 5591 (1967).
 57. S. Lowey, J. Kucera, A. Holtzer, J. Mol. Biol. 7, 234 (1963); J. Olander, M. Emerson, A. Holtzer, J. Amer. Chem. Soc. 89, 3058 (1967); W. McCubbin and C. Kay, Biochim. Biophys. Acta 154, 239 (1968).
 58. J. M. Scott and J. C. Rabinowitz, Biochem. Biophys. Res. Commun. 29, 418 (1967).
 59. C. Tanford and R. Lovrien, J. Amer. Chem. Soc. 84, 1892 (1962); W. A. Schroeder, J. R. Shelton, J. B. Shelton, B. M. Olson, Biochim. Biophys. Acta 89, 47 (1964); K. Weber and H. Sund, Angew. Chem. 77, 621 (1965); W. A. Schroeder, J. R. Shelton, J. B. Shelton, J. B. Shelton, B. Bobberson, G. Apell, Arch. Biochem. Biophys. 131, 653 (1969).
 60. A. Morawiecki, Biochim. Biophys. Acta 44, 604 (1960); M. A. Steinmetz and W. C. Deal, Jr., Biochemistry 5, 1399 (1966).
 61. F. H. Gaertner and J. A. De Moss, J. Biol. Chem. 244, 2716 (1969).
 62. A. Yoshida, *ibid.* 241, 4966 (1966); Proc. Nat. Acad. Sci. U.S. 57, 838 (1967).
 63. D. L. Correll, E. Sterrs, Jr., K. M. Towe, W. Shropshire, Jr., Biochim. Biophys. Acta 168, 46 (1968).
 64. A. Hattori, H. L. Crespi, J. J. Katz, Biochim. Biophys. Acta

- W. Shropshire, Jr., Biochim. Biophys. Acta 168, 46 (1968).
 64. A. Hattori, H. L. Crespi, J. J. Katz, Bio-chemistry 4, 1225 (1965); E. Scott and D. S. Berns, *ibid.*, p. 2597; D. S. Berns and A. Morgenstern, *ibid.* 5, 2985 (1966); O. Kao and D. S. Berns, Biochem. Biophys. Res. Commun. 33, 457 (1968).
 65. N. A. Frigerio and H. A. Harbury, J. Biol. Chem. 231, 135 (1958).
 66. H. S. Penefsky and R. C. Warner, *ibid.* 240, 4694 (1965).
 67. N. M. Kredich, M. A. Becker, G. M. Tom-

- 240, 4694 (1965).
 240, 4694 (1965).
 67. N. M. Kredich, M. A. Becker, G. M. Tomkins, *ibid.* 244, 2428 (1969).
 68. J. C. Gerhart and H. K. Schachman, *Biochemistry* 4, 1054 (1965); H. K. Schachman and S. J. Edelstein, *ibid.* 5, 2681 (1966); J. P. Changeux, J. C. Gerhart, H. K. Schachman, *ibid.* 7, 531 (1968); K. Weber, *Nature* 218, 1116 (1968); D. C. Wiley and W. N. Lipscomb, *ibid.*, p. 1119.
 69. W. Takagi and F. H. Westheimer, *Biochemistry* 7, 891 (1968); *ibid.*, p. 895.
 70. M. P. Tombs and M. Lowe, *Biochem. J.* 105, 181 (1967).
- 181 (1967).
- 71. N. B. Madsen and C. F. Cori, J. Biol. Chem. 223, 1055 (1956); V. L. Seery, E. H. Fischer, D. C. Teller, Biochemistry 6, 3315 (1967); D.

L. DeVincenzi and J. L. Hedrick, ibid., p. 3489.

- 72. G. Bernardi and W. H. Cook, Biochim. Bio*phys. Acta* 44, 96, 105 (1960); R. W. Burley and W. H. Cook, *Can. J. Biochem. Physiol.* 40, 363 (1962).
- 40, 363 (1962).
 73. H. Lochmüller, H. G. Wood, J. J. Davis, J. Biol. Chem. 241, 5678 (1966).
 74. P. H. W. Butterworth, P. C. Yang, R. M. Bock, J. W. Porter, *ibid.* 242, 3508 (1967).
 75. T. Hofmann and P. M. Harrison, J. Mol. Biol. 6, 256 (1963).
 74. M. Crocht and J. W. Nichel Biochem. J.
- 76. J. M. Creeth and L. W. Nichol, Biochem. J.
 77, 230 (1960); F. J. Reithel, J. E. Robbins, G. Gorin, Arch. Biochem. Biophys. 108, 409 (1964).
- 77. P. W. Trown, Biochemistry 4, 908 (1965); R. Haselkorn, H. Fernandez-Moran, F. J. Kieras,
- P. W. Trown, Biochemistry 4, 908 (1965); R. Haselkorn, H. Fernandez-Moran, F. J. Kieras, E. J. F. van Bruggen, Science 150, 1598 (1965).
 A. Holtzer and S. Lowey, J. Amer. Chem. Soc. 81, 1370 (1959); H. Mueller, J. Biol. Chem. 239, 797 (1964); Y. Tonomura, P. Appel, M. Morales, Biochemistry 5, 515 (1966); E. Richards, C.-S. Chung, D. Menzel, H. Olcott, ibid. 6, 528 (1967); L. Gershman, A. Stracher, P. Dreizen, J. Biol. Chem. 244, 2726 (1969); D. Kominz, W. Carroll, E. Smith, E. Mitchell, Arch. Biochem. Biophys. 79, 191 (1959); D. Frederiksen and A. Holtzer, Biochemistry 7, 3935 (1968).
 D. Zipser, J. Mol. Biol. 7, 113 (1963); U. Karlsson, S. Koorajian, I. Zabin, F. S. Sjostrand, A. Miller, J. Ultrastruct. Res. 10, 457 (1964); K. Weber, H. Sund, K. Wallenfels, Biochem. Z. 339, 498 (1964).
 C. A. Woolfolk and E. R. Stadtman, Arch. Biochem. Biophys. 122, 174 (1967); R. C. Valentine, B. M. Shapiro, E. R. Stadtman, Biochemistry 7, 2143 (1968).
 R. C. Valentine, N. G. Wrigley, M. C. Scrutton, J. J. Irias, M. F. Utter, Biochemistry 5, 3111 (1966).
 R. R. Steiner and H. Edelhoch, J. Amer. Chem. Soc. 83, 1435 (1961); H. Edelhoch and B. de Crombrugghe, J. Biol. Chem. 241, 4357 (1966).
 Y. Kaziro, S. Ochoa, R. C. Warner, J. Chen,

- and B. de Crombrugghe, J. Biol. Chem. 241, 4357 (1966).
 83. Y. Kaziro, S. Ochoa, R. C. Warner, J. Chen, *ibid.* 236, 1917 (1961).
 84. H. Bloemendal, W. S. Bont, J. F. Jongkind, J. H. Wisse, *Exp. Eye Res.* 1, 300 (1962); H. Bloemendal, W. S. Bont, E. L. Benedett, J. H. Wisse, *ibid.* 4, 319 (1965).
 85. E. A. Boeker and E. E. Snell, J. Biol. Chem. 243, 1678 (1968).

- J. H. Wisse, *ibid.* 4, 319 (1965).
 85. E. A. Boeker and E. E. Snell, J. Biol. Chem. 243, 1678 (1968).
 86. A. Stevens, A. J. Emery, Jr., N. Sternberger, Biochem. Biophys. Res. Commun. 24, 929 (1966); J. P. Richardson, Proc. Nat. Acad. Sci. U.S. 55, 1616 (1966).
 87. M. Koike, L. J. Reed, W. R. Carroll, J. Biol. Chem. 238, 30 (1963); C. R. Williams and L. J. Reed, Fed. Proc. 23, 264 (1964).
 88. C. Frieden, J. Biol. Chem. 237, 2396 (1962); J. E. Churchich and F. Wold, Biochemistry 2, 781 (1963); H. Sund, Angew. Chem. 76, 954 (1964); E. Appella and G. M. Tomkins, J. Mol. Biol. 18, 77 (1966).
 89. S. M. Pickett, A. F. Riggs, J. L. Larimer, Science 151, 1005 (1966); K. E. Van Holde and L. B. Cohen, Biochemistry 3, 1803 (1964); H. Fernandez-Moran, E. J. F. van Bruggen, M. Ohtsuki, J. Mol. Biol. 16, 191 (1966); R. Lontie and R. Witters, in The Biochemistry of Copper, J. Peisach, P. Aisen, W. E. Blumberg, Eds. (Academic, New York, 1966), p. 455.
 90. D. Guerritore, M. L. Bonacci, M. Brunori, E. Antonini, J. 24 (1965).
 91. L. E. Bockstahler and P. Kaesberg, Biophys. J. 2, 1 (1962).
 92. R. Markham, Faraday Soc. Discussions 11, 221 (1951); J. I. Harris and J. Hindley, J. Mol. Biol. 3, 117 (1961).
 93. F. A. Anderer and H. Restle, Z. Naturforsch. 19b, 1026 (1964).

- Mol. Biol. 3, 117 (1961).
 93. F. A. Anderer and H. Restle, Z. Naturforsch. 19b, 1026 (1964).
 94. H. Yamazaki and P. Kaesberg, Biochim. Biophys. Acta 53, 173 (1961).
 95. J. J. Kelley and P. Kaesberg, ibid. 55, 236 (1962); ibid. 61, 865 (1962).
 96. C. Gregolin, E. Ryder, R. C. Warner, A. Kleinschmidt, M. D. Lane, Proc. Nat. Acad. Sci. U.S. 56, 1751 (1966).
 97. R. T. Hersh and H. K. Schachman, Virology 6, 234 (1958).
- R. T. Hersh and H. K. Schachman, Virology 6, 234 (1958).
 M. E. Reichmann, J. Biol. Chem. 235, 2959 (1960); M. E. Reichmann and D. L. Hatt, Biochim. Biophys. Acta 49, 153 (1961).
 F. A. Anderer, Advan. Protein Chem. 18, 1 (1963); D. L. D. Caspar, ibid., p. 37.

17 July 1969

SCIENCE, VOL. 166