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It is difficult to visualize convective 
dispersion, accounting for the short 
pulmonary gas transport times we 
measured; convective dispersion re- 
quires well-developed parabolic velocity 
profiles where the central streamlines 
move at twice the average velocity. 
Laminar profiles of this kind are un- 
likely to develop within the rapidly 
arborizing bronchial tree (gas molecules 
arriving at an average alveolus must 
traverse > 20 generations of branches 
with a distance of only 3.5 diameters 
between bifurcations) (1). In this system 
of branching tubes, the faster-moving 
molecules in the center of one bronchus 
are divided at the branching point so 
that they tend to be moved into the 
slow-moving streamlines near the walls 
of the next branches, thus keeping con- 
vective dispersion to a minimum. 
Rapid radial diffusion in these narrow 
tubes further minimizes radial gas con- 
centration gradients making significant 
convective dispersion even more im- 
probable. 

Because the bronchial tree is not 
open-ended, a tidal volume of 360 ml 
cannot be expected to reach the alveolar 
surface in a lung with a volume of 
3600 ml by convective dispersion alone 
or, for that matter, 'by any other form 
of bulk flow. Indeed it can be shown 
by conservative calculations that dif- 
fusion is the primary mechanism of 
transport for the terminal 2 cm of the 
airways. According to Cumming et al. 
(2), still gas diffusion alone would re- 
quire on the order of 1 second to 
transport detectable quantities of car- 
bon monoxide over this distance; so 
even if we assume 0 time for bulk flow, 
still gas diffusion alone would require 
more time than we measure for the 
entire process. Obviously, diffusion 
must be facilitated in some way. In 
applying the Taylor analysis (3, 4) to 
the lung, radial diffusion reduces radial 
concentration gradients very rapidly. 
There does remain, however, a signifi- 
cant longitudinal concentration gradient 
which is the basis of our speculation 
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entire process. Obviously, diffusion 
must be facilitated in some way. In 
applying the Taylor analysis (3, 4) to 
the lung, radial diffusion reduces radial 
concentration gradients very rapidly. 
There does remain, however, a signifi- 
cant longitudinal concentration gradient 
which is the basis of our speculation 
concerning 'bulk flow-diffusion interac- 
tion. We agree, as we stated in our 
report, that the characteristic times 
must be compared for each branch in 
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the ,bronchial tree before the question 
of transport mechanisms can be re- 
solved. We also agree that the shape 
of the curve of carboxyhemoglobin for- 
mation requires further investigation. 

W. W. WAGNER, JR. 
D. E. OLSON 

Cardiovascular Laboratory, 
University of Colorado Medical Center, 
Denver 80220 
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5 June 1969 

Statistics of Unseen Animals 

Hanson (1) has proposed a new 
method for estimating the abundance 
of animal populations based on succes- 
sive surveys. The ecologist is often con- 
fronted with the problem that the or- 
ganisms are not all "seeable" or "catch- 
able" by the methods available to him; 
this results in a sample which consti- 
tutes an unknown proportion of the 
total population. Hanson's procedure 
seems, in some remarkable way, to 
overcome this problem. Unfortunately, 
however, this conclusion is mistaken 
because of fundamental errors in the 
derivation. 

It is proposed in Hanson's Eq. 4 that 

y:,-= Y (x1/K) 

where y1 is the number of unseen ani- 
mals occupying spaces in which one or 
more animals were actually seen, Y_ 
is the total number of unseen animals, 
x1 is the number of observed animals, 
and K is the population size. Since Y1 
is always less than K, this equation has 
the interesting but unrealistic property 
that y1 is always estimated to be less 
than x1. 

Consider the case in which 1000 ani- 
mals are present, on a grid of 100 
spaces, with P, the probability that any 
given animal would be seen, equal to 
.10. One would expect, in a complete 
survey, to see approximately 100 ani- 
mals and, since 

Y, -= K - x 
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or 900, Hanson's Eq. 4 would propose 
that there are 90 animals unseen on 
those grid spaces on which these 100 
animals were seen. If we may assume, 

as Hanson suggests, that P is unaffected 
by distribution, then (i) if the animals 
are extremely patchy, say, all on one 
grid space, y, would in fact be 900 
rather than 90; (ii) if the animals are 
randomly distributed, one should ex- 
pect to see these 100 animals on a total 
of about 63 spaces (Poisson distribu- 
tion), which would actually contain 
about 630 animals, of which 100 were 
seen; this would lead to an expected 
true value for y1 of about 530 instead 
of 90; (iii) if the animals were evenly 
distributed, ten per space, one should 
expect to see the 100 animals on a 
total of about 65 spaces (binomial ex- 
pansion), and y, would have a true value 
of about 550; and (iv) in the unlikely 
case that all 100 animals were seen one 
per space (biased observation methods), 
yt would be 900. Clearly, regardless 
of distribution, Eq. 4 gives extremely 
bad estimates of yL in this example; 
and, in fact, after much manipulation 
of such hypothetical cases, we are con- 
vinced that it is a very rare situation 
in which the estimates obtained are at 
all reasonable. 

The quantity Y1 (x1/K) should, un- 
der Hanson's assumptions, be an un- 
biased estimator of the number of 
animals to be seen in a second, com- 
plete census, provided that the animals 
seen in the first census (xl) were in 
some manner removed from further 
consideration. There appears to be no 
defensible logic, however, that would 
lead one to expect that this quantity 
will bear any consistent relationship 
to y1, the parameter which it is pur- 
ported to estimate; the above example 
indicates the kind of inconsistency to 
be encountered. 

If Eq. 4 is inappropriate for esti- 
mating yl, then Hanson's Eq. 5 is also 
in error, since it is derived from Eq. 4. 
In the four cases considered in the 
above example, Eq. 5 would lead to 
estimates of total population size of 
100, albout 250, about 250, and 100, 
respectively, rather than the known 
value of 1000. Since Eq. 5 is not an 
appropriate estimator for K, it follows 
that Hanson's Eq. 6 is also in error, 
that is, (x2/x1)'/2 is not identical with 
(1 - P), nor is it a reasonable estimator 
of that parameter. 

Hanson's Eq. 7 purports to provide 
an estimator of y, when the distribu- 
tion is even: 
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total number of spaces surveyed. This 
equation, however, also deserves more 
careful consideration. Based on Han- 
son's assumptions, the number of ani- 
mals initially present on the 11 spaces 
should be equal to K(l1/L1), and yi 
would then be equal to K(11/LO) - x_. 
In view of Hanson's Eq. 3, yl can also 
be expressed as 

Y-. [K(,/L) - xi] K - xi 

which simplifies to 

y, = Y[Ll-( K - )( x )] 
Under certain circumstances [for ex- 
ample, if (l/L1) > (xl/K)], it may be 
a good approximation to neglect the 
second term within the brackets and to 
set Yl approximately equal to Yj(l/L1); 
however, it is not an identity, as Han- 
son's Eq. 7 proposes, except in the 
trivial cases where either x =- 0, or 
11 = L1. 

If this (sometimes appropriate) ap- 
proximation is treated as an identity, 
in the subsequent derivation of Eq. 8 
estimates of population size become 
infinite. According to Hanson's Eq. 8, 

A^ x t2 (L, - 1) 
x,(Lt -- 1i) X- 2L 

where x2 is the number of animals 
seen on a second survey in which one 
searches for animals only on the spaces 
where no animals were seen in the first 
survey. On the basis of Hanson's as- 
sumption of an even distribution, how- 
ever, x2 can be estimated as xl[(L - 

11)/L1]; when this value is substituted 
into Eq. 8, the denominator vanishes, 
and Eq. 8 becomes 

^ xi2(Li - li) 

Since Hanson's Eqs. 9 and 10 are 
simply generalizations of his Eqs. 6 
and 5, both of which are based on the 
erroneous Eq. 4, they also would ap- 
pear to be of limited value. Hanson's 
equations do not permit the field ecol- 
ogist to overcome the problem of "in- 
visible" animals, since the method, if 
valid, would often be simpler in appli- 
cation than those methods previously 
available. It seems to us, however, that 
Hanson's observational technique is 
logically insufficient. The observed quan- 
tities, xl, x2, L1, 1, and 12, do not 
uniquely determine the probability that 
an animal will be seen and cannot, 
therefore, permit reliable estimation of 
the actual population size without fur- 
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ther information. Hence, the ecologist 
must rely either on improving his eye- 
sight or on collecting that necessary 
additional information by more con- 
ventional indirect procedures. 

J. T. ENRIGHT 
J. H. WORMUTH 

Scripps Institution of Oceanography, 
University of California, San Diego, 
La Jolla 92037 
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9 January 1969 

Enright and Wormuth have shown 
correctly that my Eq. 8 (1) could not 
be valid (except in two trivial cases) 
when both the observed and unobserved 
animals were distributed uniformly. Al- 
though my solution implied that only 
the unseen animals were evenly spaced, 
in nature the seen animals would seldom 
be clumped while the unseen ones were 
distributed uniformly. It seems intui- 
tively that the general approach of Eqs. 
7 and 8 could perhaps be modified to 
cover more general situations, but I 
have no suggestion on how to do it. 

Enright and Wormuth claim that my 
main model, Eq. 10, has "limited value" 
because it is "based on the erroneous 
Eq. 4." However, they attempt to show 
that Eq. 4 is erroneous by using a hypo- 
thetical example involving four distri- 
butions of the animals, each of which 
would be highly unusual among real 
populations. In addition, they select the 
value of P as .1; on this basis q (where 
q 1 - P) has a high value of 0.9, 
whereas I recommended that the sam- 
pling be designed to make q equal to 0.7 
or less. Animals are usually distributed 
contagiously (a clumped distribution). 
Therefore, surveys made on reasonably 
small spaces would not yield a random 
distribution as in case (ii) of Enright 
and Wormuth or an even distribution 
as in their case (iii). Certainly all of 
the population would not occur on one 
sample space as in their case (i) nor 
would clumped animals be observed at 
the rate of one per space as in their 
case (iv); and if the worker did en- 
counter such rare events he would 
surely do further sampling. 

Enright and Wormuth say that yt has 
the "interesting but unrealistic prop- 
erty" that estimates of Yl will always 
be less than those of xl. To me this is 
not necessarily unrealistic, and, even 
where it is, the combining of results 
from several surveys may tend to give 

average estimates of Yi that are closer 
to the calculated value of Yi. In the 
places where the observer sees some 
animals, visibility is probably better, 
on the average, than elsewhere, thus. 
leaving fewer unseen animals on such 
plots than could otherwise be expected. 
Also, most of us may subconsciously 
tend to look a little harder for addi- 
tional animals after some have been 
sighted on a sample plot. Both factors 
will tend to lower a potential overesti- 
mate of yt. And in the numerous cases 
where q is smaller than P, or only 
slightly larger, yi should certainly be 
smaller than xl. 

In Eq. 10, the main equation of my 
report (1), I have given a weighted 
average to the results of several sur- 
veys in an attempt to estimate the 
average value of Pi, since the actual 
probability of seeing the animals during 
successive surveys tends to fall lower 
and lower. If the various estimated 
removals of unseen animals are at first 
less than their actual removals, then the 
falling Pi's should in the later surveys 
cause the reverse tendency, thus giv- 
ing some compensation when surveys 
are summed. 

In my report (1) I gave the results 
of a few experiments with Eq. 10, and 
here I give the results from another 
experiment on laboratory mealworms 
(Tenebrio molitor). Eight students each 
had a small colony of mealworms and 
each student, as part of a class project, 
made five quick, cursory counts of his 
mealworms by the methods previously 
described. The number of animals seen 
in the eight colonies as a whole during 
each successive survey were: X1, 270; 
X2, 99; X3, 44; X4, 42; and X5, 24. 
As the samples were summed cumula- 
tively and substituted in Eq. 10, the 
following estimates of the total popu- 
lation were obtained in succession: 685, 
714, 816, and 839. The total number 
of animals actually present was 848. 

My Eq. 10 may possibly turn out 
to have "limited value" but in my 
opinion Enright and Wormuth have not 
yet demonstrated this theoretically nor 
experimentally. In their view evidently, 
the final estimate of 839 mealworms 
should rarely have been so close to the 
actual population size of 848. 

W. R. HANSON 

Department of Zoology, California, 
State College, Los Angeles 90032 
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