
same as in the f/-phase. In this struc- 
ture, the shared edges (3.16 A) are 
longer than the unshared edges (3.02 
A) for the Mn octahedra. However, for 

/B-Mn,GeO4, the shared edges (3.06 A 
on the average) are shorter than the 
unshared edges (3.12 A on the aver- 

age). Because a shortening of the shared 
polyhedral edges is an important stabi- 
lizing factor for the ionic crystals (9), 
the stability of the /3-phase in 

Mn2GeO4 might be explained by this 
shortening. 
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Visual Transient Phenomenon: Its Polarity and a Paradox 

Abstract. Luminance stimuli modulated at frequencies above flicker fusion 
create perceptible visual transient responses when the frequency is changed 
abruptly. The polarity of these transients, as directly perceived and objectively 
confirmed, is shown enough by itself to yield a powerful criterion for visual 
models. An apparent paradox when light flashes are superposed on the frequency 
discontinuity has further implications for models and suggests a possible non- 
conservation of polarity in the brightness perception process. 
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positive sign to brightness increments 
and negative to decrements, the ob- 
served polarity is summed up by 

sign of transient = sign of [t - t2] (1) 

This property is readily reconciled with 
only one of the deLange-Kelly class of 
visual models (4). Here we shall gen- 
eralize that result, deducing from Eq. 
I a stringent criterion applicable to 
many different models. 

An apparent paradox was also noted 
on adding a short flash simultaneous 
with the period jump (4)-the percept 
is diminished by a flash of the same 
sign as the transient alone (Eq. 1), and 
is enhanced by a flash of opposite sign. 
The paradox is highlighted by related 
studies which deduced incorrectly a 
sign for the transients (5). One simple 
and plausible way it might be resolved 
(4) is extended below to general linear 
theories. 

Turning now to visual models, let us 
require that they reproduce the ob- 
served polarity and the apparent para- 
dox. For brightness perception at high 
frequencies, deLange (6) has argued in 
favor of linear models. For these, or 
for the linear limit of a nonlinear 
model, we can easily demonstrate how 
severe our requirements can be. 

Consider any linear model whose re- 
sponse, subject to some detection rule, 
is to be a brightness analog. The re- 
sponse R(t) to an input I(t) may be ex- 
pressed in general as (7) 
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A light whose luminance oscillates 
rapidly enough around a constant level 
L is seen as the unvarying luminance L 
(Talbot-Plateau law), provided among 
other things the frequency is constant. 
Flicker can be sensed, however, even 
with oscillations always faster than fu- 
sion and L kept constant, if the fre- 
quency itself is modulated by abruptly 
alternating increases and decreases (1). 
Not surprisingly, the alternation rate 
must be below fusion (2). Of great in- 
terest, however, is the fact that the eye 
does respond to the individual fre- 
quency jumps (3). We are studying that 
elemental response and discuss here its 
curious nature. 

The stimulus studied (Fig. 1) con- 
tains one abrupt frequency change, 
with both periods tl and t2 shorter than 
the fusion limit, and both wavetrains 
long enough to insure that the eye is 
in a steady-state at the time of the pe- 
riod discontinuity and is unperturbed 
by the stimulus cutoff. When one views 
this stimulus, a transient effect is expe- 
rienced at the jump in period if It2- t- 1 
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is large enough (3). For example, with 
a moderately high mean luminance L, 
the effect is readily apparent for the 
case t= 1 msec and t2= 5 msec. 

These transients have an interesting 
appearance. Careful observers agree that 
with tl less than t2 as depicted in Fig. 
1, the period jump is perceived as a 
brief eclipse, whereas, with the reverse 
configuration t1 greater than t2, the ex- 

perience is a momentary increase in 
brightness. That period discontinuities 
are perceived as brightness changes is 
interesting, but understandable (see Eq. 
5). Also, details of the thresholds, reac- 
tion times, L dependence, and so forth 
no doubt contain a wealth of informa- 
tion on the temporal sensitivity of the 
eye. However, we focus here on just theq 
polarity of the transients, for it alone 
is very significant. 

In reporting (4) on the polarity of 
the transient, we described some ob- 
jective tests (thresholds and reaction 
times) which confirm the direct percep- 
tion. If, as is natural with luminance 
increases taken as positive, we assigr 
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where the Green's function G(t,t') is 
the response to an impulse 8(t-t'), 
which completely specifies the model. 
For the input discontinuous at t-- 0 

(Fig. 1) we write 

I(t) = IL,(t) + S(t) [l2(t) - I(t)] (3) 

where the unit step S(t) = t, 8(t')dtt. 
Inserting Eq. 3 into Eq. 2 and using 
causality (G(t,t') = 0 for t < t') gives 
R S X0 G I for t < 0 and R = G 12 
+ Mo G[11 -12 for t> 0. Now if 11 
and s2 oscillate rapidly about the same 
mean I and if we require the model to 
satisfy the Talbot-Plateau law above, 
then 5 GI, = | ! G12 oc I within un- 
detected fluctuations. Therefore we ob- 
tain the 

transient = 

S(t) G(t,t') liL(t') I2(t)] dt' (4) 
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Fig. 1. Stimulus waveform [see (4)]. 

This is zero for t <0, of course, and 

may jump at t =0 depending on the 

discontinuity in I and the structure of G. 
For t> 0 (t t') we assume G differ- 

entiable and 11, 12 rapidly oscillating 
(periods tl, t2 < < model time scale 0). 
Then we may integrate by parts and 

drop terms of higher order in tl,2/ 0. 
With G(t, - o) =0 (7), and I1,2 = I+ 

I,(4/7rt) sin 27rlt/ti,2 ( = 1,3,5, *) 
for the analog of Fig. 1, we thereby re- 
duce Eq. 4 to 

transient (t > 0) G(t,O) * [t2 - tl] * (5) 

with relative error ~ (t1,2/ )2. This 

generalizes readily to G(t,O) [m2t2-- 
mltl] Il(c/27rt) for any -1.2 that are 

periodic and odd, differing only in 

period and perhaps modulation (rl,2) 
and with Fourier sine coefficients ct. 
Thus abrupt changes in modulation or 
in period give similar effects. Note that 
Levinson's (5) pure sinusoids corre- 

spond to 1(ce/27rt) = /27r and the spe- 
cial cases either ml = 0 or m, = 0. 

The transient Eq. 5 separates into a 
model factor G(t > 0,0) and a stimulus 
factor cc [t--tl]. If visibility corre- 

sponded solely to the size of the model 
transient, this would imply threshold 
curves tl t2 -_ a constant for any 
linear model, with only the constant 

dependent on specifics-which is the 

general trend observed (1). We defer 
numerical studies and consider now 

only the sign of the transient. 
The polarity criterion follows at once 

from Eqs. 5 and 1: a model to be con- 
sistent with the polarity observations 

requires 

G(t > O, t' = O) predominantly < 0 (6) 

by whatever detection scheme the 
model assumes, that is, an acceptable 
model must have impulse response G 
detected as negative. This does not say 
the response to a finite pulse is nega- 
tive, for that depends on fG, including 
any singularities of G at t = t' = 0 which 
are excluded in Eq. 6. Indeed the model 
had better give positive response to a 
step or a long "flash." Hence, Eq. 6 is 
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a serious restriction. 

The general power and facility of 
this polarity criterion is reflected in the 
fact that the great majority of proposed 
models are not immediately compatible 
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with it (8). A few examples must suf- 
fice here, selected for ease of illustra- 
tion only and with no space to do jus- 
tice to their merits in other respects. 
Perhaps most familiar are the "de- 

Lange models" [n-stage integrators, 
see (5)] for which G(t,t') = G(t - t') 
where Gj(t) = S(t) exp(- t/O)(t/ O) - / 
(n - 1)! 0. This is always positive, so 
that Eq. 6 absolutely excludes a pure 
deLange model. The broader class of 

"deLange-Kelly models," which in- 
clude also differentiations, have G(t,t') 
a linear combination of the above G,'s 
and, as indicated earlier (4), only one 
is easily reconciled with Eq. 6. An ex- 

ample of the entirely different class of' 
"Ives (diffusion) models" is Veringa's 
(8) for which the G (his Ra) is positive 
and cannot be reconciled with the cri- 
terion Eq. 6. Finally, a nonlinear ex- 

ample is the nicely posed model of 

Sperling and Sondhi (8) which, on the 
basis of its linear limit and assumed 
detector, has G (their figure 7) unac- 

ceptable by our criterion. 
Now consider the flash paradox. To 

resolve it in a linear model, the super- 
position principle requires that a brief 

input by itself give response detected 
as opposite in sign to the input. Previ- 
ously (4), we found a simple amplitude- 
duration detector,-added to the al- 
lowed deLange-Kelly model in order 
to preserve steep flanks in "deLange 
curves"-also accomplishes this. Here 
we show it does the same for any model 

satisfying, as it ought, Eq. 6. Thus, for 
a rectangular input I- 10 for 0 t r 
and Io = 0 otherwise, Eq. 2 gives R(t) 
= /o0fo G(t,t') dt'. Now if T is less 
than a duration threshold At, say, the 
initial response by itself is not detected, 
but only that at t> At> r. Then t> 
T t' in S0 G, so singularities again 

are excluded, and by parts 

R(t > r) - G(t,O) 
* 

7- Io (7) 

with relative error - 7/0. Hence, by 
Eq. 6, this detected response is opposite 
in sign to Io, as desired. Further, super- 
posing Eqs. 7 and 5, we see that their 
forms permit complete cancellation (5) 
for 7 - 4[tl 

- 
t2] 

* 
(I/o). 

We return finally to the eye. If super- 
position remains valid even very rough- 
ly, then also in the perception of brief 
flashes a nonconservation of polarity 
must somehow occur. However, if in 
reality polarity is conserved, the para- 
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We return finally to the eye. If super- 
position remains valid even very rough- 
ly, then also in the perception of brief 
flashes a nonconservation of polarity 
must somehow occur. However, if in 
reality polarity is conserved, the para- 
dox deepens. In any event, the danger 
in interpreting observations on an as- 

sumption of polarity conservation (5), 
though in accord with most models, is 
pointed up by the flash paradox. Con- 

dox deepens. In any event, the danger 
in interpreting observations on an as- 

sumption of polarity conservation (5), 
though in accord with most models, is 
pointed up by the flash paradox. Con- 

versely, it is striking that direct per- 
ception gives so selective a test for 
models as the polarity criterion, Eq. 6. 
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versely, it is striking that direct per- 
ception gives so selective a test for 
models as the polarity criterion, Eq. 6. 
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