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Observed Diffraction Pattern and 
Proposed Models of Liquid Water 

Most models are either incompatible with observed x-ray 

scattering or insufficiently defined for adequate testing. 

A. H. Narten and H. A. Levy 

Molecular theory can predict some 
of the macroscopic properties of mon- 
atomic fluids from first principles (1). 
The behavior of associated liquids such 
as water is so much more complex 
than that of the fluid noble gases that 
methods of interpretation are much 
more crude. In order to understand and 
perhaps predict the bulk properties of 
such liquids, it is necessary to make as- 
surmptions about the "structure" of 
these systems, that is, about the aver- 
age arrangement of molecules with re- 
spect to each other, insofar as this is 
nonrandom. Such a system of postulates 
and inferences is generally called a 
model of the liquid structure. 

Most of the proposed water models 
attempt to describe the structure and 
size of associated units and their vari- 
ation with temperature. Although no 
single model explains all the known 
properties of liquid water, several mod- 
els which differ significantly at the 
molecular level have been shown to 
account more or less satisfactorily for 
a number of the observed thermody- 
namic, spectroscopic, and transport 
properties of the liquid (2). Thus, the 
macroscopic behavior of water alone 
does not furnish a suitable criterion for 
the acceptance of a particular model. 
Perhaps the most direct information 
about the average molecular configura- 
tion in the liquid state can be obtained 
from the diffraction pattern. Even 
though a model which scatters x-rays 
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in exactly the same way as liquid water 
cannot be proved to be unique, this 
agreement is necessary for the model to 
be tenable. Many proposed water mod- 
els are not sufficiently defined at the 
molecular level to permit computation 
of x-ray intensity and radial distribu- 
tion functions, and thus these models 
cannot be tested with the x-ray data. 
Our critical examination is therefore 
confined to models for which radial 
distribution functions have been, or 
can be, calculated. 

Before we enter into a detailed dis- 
cussion of proposed models for liquid. 
water, we shall outline what kind of 
information can be extracted from dif- 
fraction data on liquids and shall state 
the conditions that a model must meet 
if it is to be tested. 

X-ray Scattering and Radial 

Distribution 

Heteratomic liquids. Consider a nmac- 
roscopically isotropic diffracting object 
in which the relative positions of the 
atoms are fixed. The intensity, in elec- 
tron units, of a coherently scattered 
wave is given by the Debye equation 
(3) 

l(s) - 

N N 

A, A [fi(s) fi(s) sin(s) ,)]/sr'i (1)X 
i_1 jowl 

with summation for both i and j over 
all N atoms in the system. The scatter- 
ing variable s is defined as (4f-/X)sinO, 
where X is the x-ray wavelength and 
20 is the scattering angle. The atomic 
form factors /(s) are the Fourier trans- 
forms of the radial distribution func- 
tions for the electron density in the in- 
dividual atoms, accessible from calcu- 
lations at the outset. It is convenient to 
separate terms in Eq. 1 for i -j, 
which are not dependent on a separa- 
tion distance rig. The total intensity 
corrected for these terms (the reduced 
intensity function) is 

N 
l4.s),f;2(S)= 

N N 

E~s) E' If i(s) fi(s) Si (SJ'i.j)]1S1 ij (2) 
i-1 ji/l 

In a real object, and particularly in 
a fluid, relative atomic positions are 
not rigidly maintained. We represent 
by 47-r 2pf), (r) a distribution function 
giving the probability that distinct pairs 
of atoms of kind or,/ are to be found 
separated by a distance r. The func- 
tions pa,] represent the average distri- 
btution of pairs over both time and the 
volume of the sample. 

In these terms, the scattered intensity 
becomes 

i(s) _ I(s)/l u - f I J(si) 
i-1 

EZ ZE m(s) fJ,(s) S [47rr2p,, (r) siti(sr)]/sr dr 
a = 1 , =1 0 

in which a structural unit containing 
m atoms is visualized as representative 
of the whole sample, which contains n 
such units. The term 

E J2(S) 

is the independent atomic scattering, 
and the reduced intensity i(s) is the 
structurally sensitive part of I(s)/n, the 
measured intensity scaled to one struc- 
tural unit. In order to apply the Fou- 
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river integral theorem, it is advantageous 
to add and to subtract from the above 
expression the double sum 

Z E [J'5(s) Ip(s)1 4wr 4p sin(sr)]/sr dr 

where p,: is the bulk number density 
of structural units. The added double 
sum corresponds to a delta function at 
s 0 Wich does not contribute to the 
observable scattered in tensity and may 
therefore be neglected. TL. expression 
for the reduced intensity becomes 

i(s) > s) E E (s) ( f47r1' [pp(r) - pot sin(s)]1/sr dr (3) 
a;= 1 Ad I 0 - 

with summation over all distinct pairs 
in the structural unit. 

For a liquid system, the pair density 
functions pap(r) should approach closely 
the bulk density po beyond a critical 
distance r- r., which may be taken as 
a measure of the extent of short-range 
order in the liquid. If it is assumed that 
all pair density functions pacp(r) become 
precisely equal to po at large r, it may 
be shown that l(s) approaches zero at 
s < 1 / r.. In practice, it is found that 
1(0) is finite. This implies that there are 
persistent long-range variations of pap(r) 
from p.e For a liquid composed of one 
well-defined molecular species which 
need not be monatomic, the small- 
angle scattering conforms to the equa- 
tion (4) 

1(O)/inF2 (P - <V>)2>/<V> (3a) 

where v is the instantaneous and < v > 
is the average number of molecules in 
a volume whose dimensions are large 
compared to rc, F is the number of 
electrons per molecule, and the aver- 
ages are over time and the volume of 
the sample. The critical length r, is 
always several times larger than molec- 
ular dimensions; for water it is esti- 
mated (see below) - to be about 8 ang- 
stroms. For some exceptional systems 
(for example, fluids near the critical 
point) it approaches macroscopic di- 
mensions, and the limiting intensity 
1(0) is reached only at unobservably 
small scattering angles. 

A particular application of Eq. 3a 
concerns random equilibrium fluctua- 
tions in the local number density in a 
system containing one kind of mole- 
cule, in which the average density is 
also the most probable one, and only 
small fluctuations are present. Statistical 
mechanical considerations (5) yield for 
the relative variance in particle number 
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whicla appears on the right side of 
Eq. 3a 

kTp (3b) 

where K is the isothermal comrpres- 
sibility, k is the Boltzmann constant, 
and T is the absolute temperature, Ran- 
dom equilibrium density fluctuations 
are, of course, present in any system 
but may be only one source of such 
fluctuations. 

In the special case in which the s at- 
tering system consists of one kind of 
atom, the double sum (Eq. 3) reduces 

to one term, and 
it is possible to ob- 
tain the atomic dis- 
tribution functions. 

p(r) by Fourier transformation. In a 
similar manner, a distribution function 
for molecular centers can be obtained 
from Eq. 3, if the system consists of 
one kind of molecule, and if the mole- 
cules are spherically symmetrical and 
randomly disposed (6). In general, 
however, the corresponding quantities 
pa/3(r) are not obtainable individually, 
It is nevertheless useful to construct 
a modified distribution function by 
Fourier transformation, namely 

in m 
D(r) - E D,(r) = 

x=1 fPz1 

47r7'po + (2r/wr) jsi(s) M (s) sin (sr) d (4) 
0 

with 

7n 

M(s) _ [E7 mWs)rl 
a -_ 1 

for s A Smaxh the maximum value of s 
accessible in scattering experiments, 
and M(s) 0 otherwise. Introduction 
of this modification function into Eq. 
4 makes the product f.(s) fa(s) M(s) 
nearly independent of s and thus re- 
moves from the resulting radial distri- 
bution function the average breadth of 
the distribution of electron density in 
the atoms. The relation between com- 
ponent x-ray pair distribution functions 
Dap(r) and 47rr2pap(r) is one of convolu- 
tion 

Dn,(r) = 47r5 up, ap(u) T 5(u - r)du (4a) 

with 

T~~)= (tI/w7)J~f.(s) fp(s) M(s) cos(sr)ds 
0 

(4b) 

The function D(r), accessible from x- 
ray scattering data, is thus a kind of 
linear combination of true radial dis- 
tribution functions, which are convo- 

luted with the known functions T.J(r) 
given by Eq. 4b. The factor Tap(r) tmay 
be visualized as a shape function into 
which a pair distribution function is 
transformed by the combined effects 
of the inherent electron distribution 
and treatment of the x-ray data. 

It is not possible to decompose the 
function D(r) uniquely into components 
Da (r), which can then be deconvoluted 
into components pe(r), unless, for a 
liquid containing m different types of 
atoms, n(m + 1)/2 independent dif- 
fraction experiments are performed. For 
water, three different experiments itl- 
volving different values for the form 
factors f would be necessary. Such a 
study, although possible in principle by 
the use of neutron diffraction data on 
isotopically substituted waters, has not 
been undertaken. 

Since water molecules interact pre- 
dominantly with long-range, noncentral 
forces which are not pairwise additive, 
it is not possible to compute radial dis- 
tribution functions for the liquid from 
the known properties of an isolated 
water molecule. Thus comparison either 
with theory or with other experiment- 
ally known properties of liquid water 
would not be possible even if the in- 
dividual pair distribution functions 
4rr2pa,(r), rather than only the x-ray 
radial distribution function D(r), were 
known. For water the only recourse 
open, as for other polyatomic liquids, 
is to calculate the atom-pair distribu- 
tion functions from proposed models 
and then to construct intensity and 
radial distribution functions which can 
be compared with those derived from 
x-ray diffraction data. 

Models of liquid structure. A model 
that is to be tested against diffraction 
data must have a number of properties 
and must meet certain conditions in 
order to be useful, realistic, and tract- 
able in this context: 

1) It must specify all interactions, 
properly weighted, to a distance r r., 
where r. measures the extent of order 
in the liquid. 

2) It must do this in terms of a small 
number of independent parameters. 

3) It must ensure that structurally 
equivalent atoms have the same dis- 
tance spectra. 

4) The average density of interac- 
tions must be consistent with the densi- 
ty of the liquid. 

5) Thie distance spectra of different 
atoms must be geometrically comnpati- 
ble. 

Condition I is necessary for the cal- 
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culation of intensity functions accord- 
ing to Eq. 5. We will show below that 
Be 8 angstroms for water at room 
temperature; thus, a water molecule 
located at the center of a sphere with 
a radius of 8 angstroms "sees" approxi- 
mately (4/3)7r83po 0 70 other mole- 
cules in positions which are, on the 
average, not random. The expression 
for the intensity function will thus con- 
tain a similar number of terms, and 
condition 2 is necessary since a de- 
scription with such a large number of 
adj stable parameters is meaningless. 
Any realistic model must generate a 
distance spectrum in such a way that 
radial distribution around any atom is, 
on the average, the same as that around 
any atom structurally equivalent to it- 
hence condition 3. It is, of course, per- 
missible to treat chemically equivalent 
atoms as structurally nonequivalent. 
Condition 4 requires no comment, and 
condition 5 is necessary because the 
distribution of neighbors about any 
atom is not independent of the distri- 
bution about the neighboring atoms: 
The placement of one atom clearly 
excludes other atoms from the volume 
it occupies; furthermore, any one atom 
must be simultaneously a first neighbor 
of, for example, four other atoms (tet- 
rahedral coordination), a second neigh- 
bor of perhaps 12 others, and so 
forth. 

The only way known to us of fulfill- 
ing these conditions is to assume a cer- 
tain near-neighbor configuration around 
one or more origin atoms and to re- 
peat this structural unit according to 
some specified rule. An approach of 
this kind involves a space lattice. Un- 
like the crystalline case, however, repe- 
tifon of the structural unit is imperfect 
and therefore is accompanied by rapid, 
progressive loss of positional correla- 
tion between atoms in adjacent "primi- 
tive cells." This loss of correlation may 
be embodied in the model in the form 
of mean-square variations from average 
separations which increase rapidly with 
radial distance, and the distance spec- 
trum characteristic of a particular mod- 
el can be closely approximated by a 
uniform distance distribution (con- 
tinuum) a few molecular radii away 
from any starting point. 

For such a description, Eq. 3 takes 
the form 

in 
i(s) = E lexp(-bjs2) fl(s) fj(s) sin(srj) ]/srij + 

,i=1 j 

E E {exp(-Ibi,3s2) f.(s) fp(s)47rpo [srap cos (srap) - sin (srCa)] } /5s (5) 
c=l _=1 
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where the summations are over the 
structural unit for a, /3, and i, and over 
all atoms in the discrete structure for 
i. The first double sum in Eq. 5 arises 
from carrying out the integration in 
Eq. 3 over the discrete structure, that 
is, for the range 0 < r < r., and aver- 
aging the Debye equation (Eq. 2) over 
discrete Gaussian distributions with 
average separation r1J and mean-square 
variation 2bij. The second double sum 
in Eq. 5 results from integration over 
the continuum, that is, for the range of 
r in which pas(r) = Po. The boundary 
between the two regions need not be 
sharp; in Eq. 5, revs represents the mean 
and 2bcap the variance of this boundary 
for the pair correlation function pap. 
The second double sum corresponds to 
scattering from the "hole" in a uni- 
form medium in which the discrete 
structure is situated. Fourier trans- 
formation of the reduced intensity 
function (Eq. 5) according to Eq. 4 
yields the x-ray radial distribution 
function of the model. 

The preceding paragraphs describe 
a way of constructing a one-phase mod- 
el in which only short-range correla- 
tion exists. There has been much dis- 
cussion of models of a different sort 
which possess two or more distinct 
"phases." In order to test the validity 
of such a model with x-ray diffraction 
data, much detail is needed that is 
usually left unspecified, namely: 

6) The detailed average arrange- 
ment of molecules within each phase. 

7) The relative proportions of the two 
or more phases. 

8) The detailed average arrangement 
of molecules around the boundaries of 
a phase region. 

9) The average separation and rela- 
tive orientation of pairs of such re- 
gions. 

Conditions 8 and 9 need not be 
given in detail if the regions are large 
compared with r, and randomly dis- 
posed. The assumption of such large 
domains, however, has important im- 
plications with regard to small-angle 
scattering. 

Liquid water. The x-ray radial dis- 
tribution functions D(r) for liquid wa- 
ter (8) (Fig. 1) contain information 
about the average number of neighbors 
at various radial distances around any 

molecule (9) taken as the origin. If the 
liquid were completely uniform, then 
D(r) would be equal to 47wr2po (Eq. 4). 
However, because of the finite size of 
a water molecule, D(r) is zero up to 
about one molecular diameter and ap- 
proaches 4rr2po only at distances of 
some five molecular radii. Between 
these radial distances the radial dis- 
tribution function differs appreciably 
from 4tr2po, and this fact must be 
ascribed to positional correlation of 
oxygen atoms, that is, "structure" in 
liquid water. 

The following significant features 
can be deduced directly from the curves 
of Fig. 1: 

A) There are deviations from a uni- 
form distribution of distances (there is 
"structure") to about 8 angstroms at 
room temperature. 

B) The first prominent maximum, 
corresponding to near-neighbor inter- 
actions, shifts gradually from 2.82 ang- 
stroms at 40C to 2.94 angstroms at 
200'C. These numbers are obtained 
from a large-scale plot of the tabu- 
lated (10) functions G(r) D(r)/47rr2po. 

C) The radial distribution of oxygen 
atoms in water at 4'C is not signifi- 
cantly different from that in deuterium 
oxide at the same temperature. 

D) The average coordination number 
in liquid water from 40 to 200'C is 
approximately constant and slightly 
larger than four, but the first peak in 
the radial distribution function cannot 
be described by a single Gaussian dis- 
tance distribution. 

Points A through C follow directly 
from Fig. 1, but point D requires 
some discussion. The calculation of 
average coordination numbers from the 
area under a peak of a radial distribu- 
tion function is never unambiguous. In 
this case, the lower bound of the first 
maximum is fairly well resolved, but 
the upper bound is not. Interactions 
with second and higher neighbors con- 
tribute significantly to the area under 
the first peak, and proper resolution 
into individual components is quite un- 
certain. If we assume that the first 
maximum in the radial distribution 
function of liquid water is character- 
istic of the interaction of one oxygen 
atom with N oxygen atom neighbors 
separated by a Gaussian distribution 
of distances centered at r0, the peak 
shape can be calculated. The contri- 
bution to the peak centered at r0 from 
longer-range distances can be estimated 
as arising from a uniform distance dis- 
tribution starting at a distance r0 given 

449 



by the radius of a sphere of volume 
(N + l)/po. Using Eq. 5 and adjust- 
ing by least-squares the distance ro 
and the mean-square variations in both 
ro and re, we found that a value of 
N 4.4 gives the best agreement with 
the experimental curves for water. But 
the agreement of this "model" (4.4 dis- 
crete 0-0 interactions surrounded by 
a uniform distance distribution) with 
the radial distribution function of water 
is poor (Fig. 1). The short-distance 
part of the first peak in the D(r) curves 
is reproduced reasonably well, but the 
long-distance part is not. Since, for 

tetrahedral coordination, interactions 
with second neighbors are centered 
around 4.5 angstroms (where a broad 
maximum is observed in Fig. 1), the 
conclusion cannot be avoided that the 
first coordination sphere of a water 
molecule is complex, as stated in point 
D (1, 12). 

At the time that data for the radial 
distribution curves of Fig. I were mea- 
sured, small-angle scattering data for 
water were not available. For these 
curves the intensity functions were 
extrapolated to zero values at zero 
scattering angle (8, 10), a procedure 
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which idealizes the radial distribu- 
tion functions to those for constant 
bulk density at large values of r. Hence, 
the curves of Fig. 1 should not be con- 
sidered reliable at r > 10 angstroms. 
Recently several sets of small-angle 
scattering data have been reported (13- 
16), of which those of Levelut and 
Guinier (16) are the most accurate and 
extensive. These authors find that the 
scattered x-ray intensity for water at 
room temperature in the angular region 
0.19 < s < 0.44 is constant, with value 
l(O)/nF2 equal to 0.064 + 0.002. These 
results have been confirmed at Oak 
Ridge National Laboratory (17) to 
values of s > 0.015. These new mea- 
surements have at least two conse- 
quences for the structure of water: 

E) The lack of interference maxima 
in the small-angle region precludes any 
significant variation in the pair density 
function not included in the curves of 
Fig. 1. 

F) The value of the relative-variance 
of the particle number from extrapo- 
lated zero scattering (Eq. 3a), 0.064, 
does not differ significantly from that 
predicted by Eq. 3b: kTpoic = 0.0635. 
The random fluctuations in density ex- 
pected for a model consisting of a 
single phase and a single chemical 
species are thus sufficient to explain the 
observed small-angle scattering. The 
properties of any other sort of model 
would have to be adjusted to conform 
to this same value. 

Any proposed model for liquid water 
that has features which contradict 
points A through F must be rejected 
on the basis of the experimental evi- 
dence. 

Proposed Water Models 

Considerable evidence (2) supports 
the idea that the hydrogen bonds in 
liquid water form an extensive three- 
dimensional network, the detailed fea- 
tures of which are short-lived. Such a 
structure may arise in a variety of ways 
from units of nearly tetrahedral sym- 
metry. There are nine known modifica- 
tions of ice (18), each stable over cer- 
tain temperature and pressure ranges. 
There are numerous hydrate crystals 
in which the water molecules might 
be described as clathrate "ices" (.19) . 
In all the known ice modifications 
and most clathrate hydrates, each water 
molecule is hydrogen-bonded to four 
others. The small energy changes for 
the high-pressure ice transitions mndi- 
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cate that the four bonds with nearest 
neighbors are not critically sensitive to 
angular distortions as large as 30? from 
the tetrahedral angle. The question of 
whether hydrogen bonds are "broken" 
when ordinary ice melts, or are merely 
stretched and bent (as in the high- 
pressure ice transitions), is the subject 
of controversy. 

"Continuum" models describe water 
as a hydrogen-bonded network with a 
continuous distribution of bond energies 
and geometries. Observations of the 
vibrational spectrum of liquid water, 
which is highly sensitive to the strength 
and extent of hydrogen bonding, have 
been interpreted both in support of 
(20) and against (21) this view. A de- 
scription of this kind does not easily 
lead to a partition function and thus 
to a prediction of thermodynamic prop- 
erties. 

In "mixture" models it is assumed 
that an equilibrium exists between dis- 
crete molecular groupings with different 
numbers of hydrogen bonds per mole- 
cule. This equilibrium is temperature- 
and pressure-dependent, and formal 
descriptions in these terms account for 
many of the thermodynamic proper- 
ties of water and aqueous solutions 
(22-25). 

Results of diffraction studies may be 
cited in support of both views. Stretch- 
ing of hydrogen bonds from 2.76 ang- 
stroms in the solid to an average of 
2.82 angstroms in the liquid near the 
melting point accounts for most of the 
heat (1.4 kilocalories) necessary to melt 
one mole of ice. The fraction of 
"broken" bonds, if any, should there- 
fore be small. On the other hand, the 
first peak of the radial distribution 
function of liquid water cannot be re- 
produced by a single Gaussian distance 
distribution; consequently, there are 
almost certainly at any instant at least 
two types of water molecules in the 
liquid, each with different near-neighbor 
configurations. However, the implica- 
tion with regard to hydrogen bonding 
depends largely on the definition of a 
"broken" bond. 

Distorted bond model. Pople (26) 
has made the only attempt to derive 
the radial distribution function for a 
"continuum" model. He assumed that 
after fusion the four hydrogen bonds 
from any one water molecule are able 
to bend independently, whereas in the 
solid phases they can only bend in such 
a way that the lattice order is main- 
tained. A simple cosine expression was 
assumed for the energy of a bent bond 
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and was used to obtain the probability 
distribution function of bond angles. 
The moments of this distribution func- 
tion were then used to synthesize a 
radial distribution function composed 
of Gaussian-like components, which 
was compared to the observed func- 
tions of Morgan and Warren (12). 

Pople's treatment describes the dis- 
tribution of first (B), second (C), and 
third (D) neighbors around an arbitrary 
origin molecule (A), based on the as- 
sumption that the distribution of neigh- 
bors about any atom is independent of 
the distribution about the neighboring 
atoms. However, such as assumption 
must be incorrect because it is incon- 
sistent with the necessary condition 
of geometric compatibility. The im- 
plications of this lack of indepen- 
dence are very difficult to analyze, and 
Pople makes no attempt to do so. It 
seems to us, however, that they are 
potentially so serious as to invalidate 
his conclusions. Even apart from these 
inconsistencies, it seems clear that a 
model based only on the hypothesis of 
independent bending of hydrogen bonds 
is not sufficiently detailed to permit the 
calculation of radial distribution func- 
tions having the distinct features of 
those observed for low-temperature 
water. In particular, the complexity of 
the first shell discussed earlier is not 
reproduced. 

Flickering cluster models. Frank and 
co-workers (22, 23) and Nemethy and 
Scheraga (24, 25) have visualized liquid 
water as consisting of two or more 
"states" in equilibrium. Typically, one 
state consists of more or less or- 
dered hydrogen-bonded molecules-the 
"bulky phase" or cluster-and another 
of nonhydrogen-bonded, disordered 
molecules-the "dense phase." The 
cluster is visualized as short-lived 
(10-10 to 10-11 second) and is continu- 
ally exchanging molecules with the ad- 
jacent unstructured phase. The detailed 
arrangement of molecules within a 
cluster is never specified but it is usually 
visualized as possibly ice-like, and in 
any case as consisting of tetrahedrally 
coordinated molecules. 

We have discussed the detail needed 
in order to test the validity of a cluster 
model with x-ray diffraction data, 
namely conditions 6 through 9. Al- 
though condition 7 is predicted from 
thermodynamic considerations, condi- 
tion 6 is usually left unspecified since 
it is not needed in thermodynamic dis- 
cussions; in its absence no detailed test 
with x-ray diffraction data can be made. 

There is, however, one proposed cluster 
model (24, 25) in which the specifica- 
tions of conditions 6 through 8 have 
been given for near-neighbor interac- 
tions, and agreement with x-ray data 
is claimed. 

Nemethy and Scheraga explain the 
first peak of the radial distribution func- 
tion of water as due to interactions 
between two different near-neighbors, 
namely, interactions between hydrogen- 
bonded first neighbors (A) and interac- 
tions between first neighbors of un- 
bonded molecules and of molecules 
located on the cluster surface (B). The 
numbers (25, Table V) indicate 2.05 
interactions of type A per average 
water molecule and 3.89 interactions 
of type B, for water at 40C. The type- 
A distance was taken to be 2.76 ang- 
stroms, as in ice, and that for type B 
was empirically fitted to the observed 
radial distribution function at 3.1 to 
3.2 angstroms. Using these numbers, 
we found it impossible to reproduce 
the first peak in the radial distribution 
function of water at 40C, since the 
predicted area of this peak is much 
too large. At higher temperatures the 
discrepancy appears to be even more 
serious. 

Although the evaluation of cluster 
models against large-angle diffraction 
data is, at best, inconclusive, there are 
definite implications with regard to 
small-angle x-ray scattering. It has al- 
ready been stated that experimental 
measurements are in close agreement 
with those predicted for random equi- 
librium fluctuations in density for indi- 
vidual water molecules. Thus the 
cooperative effect which is basic to the 
flickering cluster concept would appear 
to be absent. Only if the model should 
provide an extremely small density 
difference between the constituent 
"phases" could this conclusion be 
avoided. In particular, the difference 
of 20 percent assumed by Nemethy and 
Scheraga is clearly too great. Any ice- 
like cluster structure would also seem 
to have a larger density deviation than 
can be tolerated. 

Gas hydrate model. In a large class 
of compounds known as clathrate hy- 
drates (19), water molecules form hy- 
drogen-bonded network structures in 
which, as in ice, the molecules are 
tetrahedrally or nearly tetrahedrally 
coordinated. These networks are less 
compact than that in ice, and they con- 
tain large polyhedral cavities which 
can accommodate guest molecules. 
Pauling (27) suggested that water has 
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a short-range structure similar to that 
of some gas and salt hydrates ("water 
hydrate"). Figure 2 shows the hydrate 
structure of chlorine (28) which Pauling 
proposed as a possible starting point 
toward a model for liquid water. This 
model is sufficiently well defined to 
permit the calculation of radial distri- 
bution functions, and we have investi- 
gated it in detail. 

The Pauling model (Fig. 2) assumes 
that all 46 network (N) and eight cavity 
positions of the cubic unit cell are oc- 
cupied by water molecules. The cavity 
molecules are located at the centers of 
two dodecahedra (D) and the six tetra- 
kaidecahedra (T). In order to be con- 
sistent with the density of water at 
250C (0.033 molecule/cubic angstrom), 
the Pauling model predicts, per water 
molecules 3.41 0-0 interactions of type 
N-N at a distance of 2.73 angstroms. 
In addition, there would be 0.59 inter- 
action of type N-D at 3.72 angstroms 
and 0.89 interaction of type N-T at 
3.89 angstroms. The x-ray radial dis- 
tribution function of water at 250C 
shows approximately 4.4 interactions at 
2.85 angstroms, and thus the Pauling 
model as originally described is not 
compatible with the x-ray data. 

The following modifications of the 
Pauling model, which retain the sym- 
metry of the cubic gas hydrates, Pm3n, 
were considered: 

1) Expansion of the clathrate net- 
work, accompanied by random occu- 
pancy of the cavities by more than one 
water molecule, again constrained to 
the experimental density (one indepen- 
dent distance variable). 

2) Distribution of the scattering 
density of the cavity molecules over 
the surface of a sphere of appropriate 
dimension, so that the distance to the 
nearest network oxygen atom is a van 
der Waals distance. This corresponds to 
random location within the cavities but 
maintenance of an appropriate van der 
Waals contact with the nearest network 
molecules. 

3) Localization of the cavity mole- 
cules at random at those points which 
are one van der Waals distance from 
the atoms of a polyhedral face (one in- 
dependent distance variable). 

4) Deformation of the clathrate 
cages and variation of the relative ori- 
entation. of the dodecahedra (three in- 
depen~denlt distance variables). 

.Modificationl 4, which was tried first, 
yields four different near-neighbor dis- 
tances of type N-N, which are both 
larter and smaller than the single Paul- 

Fig. 2. Gas hydrate model. Only four of 
the twelve tetrakaidecahedra around a 
central dodecahedron are shown; oxygen 
atoms on the corners of the polyhedra 
form host network around large cavities 
which accommodate guest species. 

ing distance of 2.73 angstroms. It did 
not improve the agreement with the dif- 
fraction data. We found it necessary to 
expand the clathrate network sufficient- 
ly so that the near-neighbor distances 
could assume values of at least 2.8 ang- 
stroms. 

Consideration of modification :1 indi- 
cates that the maximum network ex- 
pansion consistent with the density of 
water at 250C leads to an N-N dis- 
tance of 2.86 angstroms and two water 
molecules in each cavity. Let us define 
a cavity radius as the distance from its 
center to the nearest network position. 
For an N-N distance of 2.86 angstroms, 
the radius of a dodecahedron is 3.90 

angstroms. Placing the two D mole- 

cules equidistant from each other as 
well as from the nearest N molecules 
results in an 0-0 distance of 2.6 ang- 
stroms for these D-D and D-N interac- 

tions. We found it impossible to rec- 

oncile this short distance (even when 
modification 4 is applied) with the ob- 

served radial distribution function of 

water. 
The largest near-neighbor distance of 

type N-N, achieved by placing one 

molecule in each dodecahedron and two 

in each tetrakaidecahedron, is 2.83 

angstroms, and the radius of a tetra- 

kaidecahedron is then 4.07 angstroms. 
This results in T-T and T-N distances 

of approximately 2.71 angstroms. 
Again we found it impossible to repro- 
duce the first peak of the radial distri- 
bution function of water with this dis- 
tance spectrum. 

The common structural unit of all 
known gas hydrates is the pentagonal 

dodecahedron. The cubic configuration 
investigated by us is one of the simplest 
three-dimensional structures involving 
these building blocks. It seems unlikely 
that models based on the more comi- 
plex gas hydrates would be more suc- 
cessful in explaining the radial distri- 
bution function of liquid water, since 
these solids differ from the structure 
discussed mainly in the way in which 
the dodecahedra are arranged in a 
three-dimensional repeating lattice, that 
is, in the relatively long-range order. 
The difficulties that were encountered 
with the cubic gas hydrate model are 
associated with nearest-neighbor dis- 
tances. 

In summary, the large dodecahedral 
and tetrakaidecahedral cavities with 
near-neighbor network distances in 
agreement with observation (2.85 ang- 
stroms) lead to unacceptably low densi- 
ties. Multiple cavity occupancy to cor- 
rect the density leads to unacceptably 
short distances involving cavity mole- 
cules. Thus the large cavities appear to 
be the critically unsatisfactory feature 
of the model, 

Ice models. Even before the structure 
of solid water was known, Roentgen 
(29) suggested that ice-like domains 
were present in the liquid. Ordinary ice 
(ice-1h) is now known -(30, 31) to have 
a structure similar to that of the hex- 
agonal form of silicon dioxide, tridy- 
mite. Each oxygen atom (Fig. 3) is 
tetrahedrally surrounded by other 
neighboring oxygen atoms, forming 
layers of puckered six-membered rings. 
Two adjacent layers, related by mir- 
ror symmetry, form dodecahedral cavi- 
ties with a radius of 2.95 angstroms. 
These cavities, though significantly 
smaller than those found in the 
clathrate hydrate structures (Fig. 2), are 
large enough to accommodate a water 
molecule. 

Bernal and Fowler (32) interpreted 
early diffraction data on liquid water 
in terms of a mixture of tridymite- and 
quartz-like domains. The classical x-ray 
work of Morgan and Warren (12) led 
to the eventual abandonment of this 
widely discussed model. 

Davis and Litowitz (33) have also 
proposed that water might be a mixture 
of two kinds of domains: an open type 
with an arrangement of molecules as in 
ice-I, and a more densely packed one 
with a structure similar to that of ice-Il. 
However Davis and Litowitz gave no 
specification as to how these two struc- 
tures are arranged with respect to each 
other, and thus their model lacks the 
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complete definition (conditions 8 and 
9) necessary for comparison with dif- 
fraction data. Davis and Litowitz have 
made a calculation of the shape of the 
first peak for the radial distribution 
function of their model, but, since they 
consider only interactions between 
water molecules within each of the two 
structures, the claimed agreement with 
observation would be meaningful only 
if each of the structural domains is so 
large that interactions involving bound- 
ary molecules can be neglected. We do 
not consider it likely that the existence 
of such large domains was intended by 
the authors, but, if assumed, it would 
surely be in conflict with data from 
small-angle x-ray scattering. 

In a similar manner, Kamb (18) sug- 
gested that liquid water might be a mix- 
ture of three types of clusters having 
structures similar to ice-I, ice-II, and 
ice-Ill. He showed that linear combi- 
nations of radial distribution functions 
calculated for the three ice structures 
reproduce the curves of Morgan and 
Warren (12) qualitatively. As in the case 
of the Davis-Litowitz model, the ex- 
istence of large clusters is implied by a 
treatment of this kind. Such large clus- 
ters of configurations like ice-I, ice-Il, 
and ice-III would give rise to much 
more small-angle scattering than that 
observed by Levelut and Guinier (16) 
and are thus ruled out. 

Ice-I model. Detailed models of liquid 
water, based on a modified ice-I struc- 
ture (Fig. 3), have been proposed by 
Samoilov (34) and by Forslind (35). 
These models have achieved consider- 
able success in accounting for the prop- 
erties of water with but a few assump- 
tions (36). The liquid phase is regarded 
as an extensive hydrogen-bonded net- 
work, the details of which are short- 
lived. Over short distances from any 
origin molecule, this network is closely 
related to a slightly expanded ice-I lat- 
tice. The average structure of this net- 
work is very open, with spaces between 
the groups of molecules in tetrahedral 
coordination sufficiently large to ac- 
commodate additional water molecules 
(Fig. 3). 

Danford and Levy (37) have shown 
that intensity and radial distribution 
functions calculated for the ice-I model 
agree with the x-ray data for water at 
room temperature. Subsequent studies 
at Oak Ridge National Laboratory 
(8) have demonstrated that the same 
model can reproduce the radial distri- 
bution functions of Fig. 1 at all tem- 
peratures, and that the temperature de- 
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pendence of the model parameters is 
related to the thermodynamic proper- 
ties of water in a physically reasonable 
way. 

The complexity of the first coordina- 
tion shell is explained by the model 
(8) in terms of the distinctly different 
average environments of network and 
cavity molecules. In terms of average 
configuration, the model would thus be 
classified as a "mixture" model, with 
the network molecules forming nearly 
four hydrogen bonds each and the cav- 
ity molecules interacting with the net- 
work by less specific but by no means 
negligible forces. However, both of 
these "species" exist in environments 
which are distorted from the average, 
and these distortions are implied by 
sizable root-mean-square variations in 
interatomic distance. On a scale of 
many molecules, the ice-I model is 
"one phase" and is homogeneous. There 
is no conflict with small-angle scatter- 
ing measurements, since the superposi- 
tion of interatomic distance distribu- 
tions approaches a uniform distribution 
of distances at distances beyond about 
8 angstroms. 

Conclusions 

Most of the proposed models for 
liquid water cannot be tested against 
diffraction data because they are not 
sufficiently defined at the molecular 
level. Of the structures which have a 
sufficiently detailed basis to permit cal- 
culation of radial distribution functions, 
only the ice-I model has been shown to 
give agreement with data from both 
large- and small-angle x-ray scattering. 
In the few other cases in which radial 
distribution functions have been calcu- 
lated, the apparent agreement with ex- 
perimental curves for liquid water is 
meaningless, since the computed curves 
do not correctly describe radial distri- 
bution in the respective models. 

Any realistic model of liquid water 
must accommodate (or at least avoid 
conflict with) the significant features 
which can be deduced directly from 
the available diffraction data. In par- 
ticular, the idea that water molecules 
form clusters sufficiently different in 
size, shape, density, and structure from 
other such aggregates, or from "un- 
structured" water, to warrant the dis- 
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Fig. 3. Ice-I model. Oxygen atoms form six-membered puckered rings around cavities, 
which are not occupied in the solid (hydrogen atoms not shown). P1, P2, and Pa are 
independent near-neighbor distances of the model, which assumes only short-range 
order of the type shown. The environment of a given water molecule in the liquid 
is distorted from the average. 
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tinction seems to be extremely difficult 
to reconcile with data from small-angle 
x-ray scattering. 

If possible, proposed water models 
should specify the detail needed for 
comparison with diffraction data and 
should do this in a self-consistent way. 
If this is not done, the diffraction data 
cannot be invoked as evidence for or 
against the correctness of the model. 
Furthermore, any model that claims 
agreement with the observed diffraction 
pattern of liquid water should repro- 
duce not only the first peak but all 
other significant features of the radial 
distribution function as well. These 
conditions provide a powerful criterion 
for the tenability of proposed water 
models. 
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Mechanism of Lysozyme Action 

Lysozyme is the first enzyme for which the relation 

between structure and function has become clear. 

David M. Chapman and Nathan Sharon 

For years, one of the most intriguing 
problems in biochemistry has been the 
mechanism of enzyme action. At the 
simplest level, without considering the 
problems of the regulation or coupling 
of enzyme systems, the aim has been 
to understand how enzymes achieve 
their great substrate specificity and to 
identify the detailed. molecular mech- 
anism of a given enzyme-catalyzed re- 
action. The reactions catalyzed by a 
number of enzymes, in particular pro- 
teolytic enzymes, have, been investi- 
gated in great detail in an attempt to 
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answer the above questions, and some 
of these enzymes are now reasonably 
well understood. It is an ironic. testi- 
mony to the power of the x-ray crystal- 
lographic method, however, that lyso- 
zyme, for which there was no, substrate 
of known structure only 12 years ago, 
and which for a long period of time 
was a "neglected" enzyme, is now one 
of the few clearly understood enzymes. 

Lysozyme has had a rather peculiar 
history. In 1922 Alexander Fleming 
discovered a substance in his own nasal 
mucus capable of dissolving, or lysing, 

certain bacteria. The substance, which 
turned out to be an enzyme, was named 
"lysozyme" and was found to be widely 
distributed in nature (1). Fleming was 
quite enthusiastic about the possible 
therapeutic use of lysozyme-he had 
found it, in fact, because he believed 
that some organisms must produce 
antibacterial substances-but it soon 
developed that lysozyme was of little 
clinical value. Heartened perhaps by 
his initial partial success, Fleming went 
on to discover penicillin, the first true 
antibiotic, and interest in lysozyme fell 
into a relative decline. 

Lysozyme was not completely for- 
gotten though. The enzyme from hen 
egg white is easily isolated and puri- 
fied, stable, and of rather low molecu- 
lar weight (14,500), and as such it has 
become one of the most thoroughly 
investigated proteins (2). In 1963 
Jolles and Canfield independently eluci- 
dated the complete primary structure 
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