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by the difficulty of etching fossil fission 
tracks. Phosphoric acid has been used 
(2) to etch the fission tracks in zircon, 
but this requires high temperatures 
(375? to 500?C). Etching time is also 
critical. Overetch of a few seconds re- 
sults in precipitation of small crystals 
on the surface of the zircon that ob- 
scure the fission tracks. 

The etching technique described 
herein produces tracks (Fig. 1) similar 
to those developed by the phosphoric 
acid; however, the disadvantages of 

phosphoric acid technique are elimi- 
nated. The zircons (-60 to +200 
mesh) are mounted in epoxy (3) and 

polished to expose an interior surface. 
Interior surfaces are used, as there may 
be fossil fission tracks on external sur- 
faces caused by uranium in adjacent 
minerals. After it is polished, the epoxy 
mount is immersed in sodium hydrox- 
ide heated to 220?C. The etching solu- 
tion consists of 20 g of NaOH and 5 g 
of H,O (100N); the container used is 
a covered 35-ml platinum crucible. The 
mount is placed in the crucible with the 
zircon side down. The length of time 

necessary to etch the zircons varies. 

Purple Precambrian zircons were 
etched in 15 minutes, whereas color- 
less Oligocene zircons required 4 hours 
in the etching solution. Two mounts are 

prepared, and the first mount is given 
a 1.5-hour etching period, to gauge 
the amount of time necessary to etch 
the zircon. If no tracks are found after 
1.5 hours, the grains are placed in fresh 

etching solution for 1 to 2 hours more; 
if the sample is overetched, the other 
mount is then etched for a shorter time, 
usually 15 to 45 minutes, depending on 
the degree of overetching. 

The epoxy mount is dissolved in the 

process of etching; therefore, the grains 
must be recovered and remounted for 
irradiation with neutrons. The zircons 
are embedded in Lexan by placing them 
on a glass slide which is then heated to 
190?C. A small square of Lexan is then 

pressed on top of the zircons. The zir- 
cons embedded in Lexan plastic are 

placed next to an external detector of 
muscovite (4) and placed in a reactor 
for neutron irradiation. After irradia- 
tion the fossil tracks are counted in the 

zircon, and the induced tracks are 
counted in the muscovite detector. 

The NaOH etch technique was used 
successfully to determine the zircon age 
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Table 1. Mineral ages from the Inconsolable 
Granodiorite (MG-3). 

K-Ar Fission track- K': Ar 
Mineral (million r (million 

(million years) 
years) 

Zircon 
Grain 1 97 ? 10 
Grain 2 100 ? 10 

Apatite (5) 91 ?'9 
Hornblende (4) 98 
Biotite (4) 87 

* Xf = 7.03 X 10-17 yr-1 (8); a glass standard was 
used as a flux monitor. 
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Fig. 1. Fission tracks in a zircon from the 
Inconsolable Granodiorite of California, 
etched by sodium hydroxide solution 
heated to 220 C for 2 hours. The field 
of view is approximately 60 X 90 /u. 

nodiorite (Table 1). A discordancy be- 
tween K-Ar ages on the hornblende 
and biotite is paralleled by a similar 
discordancy in fission-track ages be- 
tween zircons and apatite and can be 
accounted for 'by their dissimilar an- 
nealing properties. As the annealing 
temperature of zircon is higher than 
that of apatite (1, 6), one would expect 
that, if the fission track ages of coexist- 

ing zircons and apatite are different, 
the zircon would be older. 
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U.S. Geological Survey, 
Menlo Park, California 94025 
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