
er during the first trimester of preg- 
nancy (Fig. 3). The amount of radio- 
activity measured in mouse embryos 
during the first trimester of pregnancy, 
when they are most sensitive to terato- 
genic agents and LSD (2-6), was about 
2.3 percent of the initial dose. 

The distribution pattern of 14C-LSD 
in the fetus was very similar to that in 
the mother (Fig. 3). The highest amounts 
occurred in the lungs, liver, intestine, 
brain, and myocardium, in that order. 
As in the mother, the fetal blood had a 
very low amount of radioactivity, an in- 
dication of a rapid transport of 14C-LSD 
through cellular membranes into the 
tissues. The uptake in the placenta was 
highest 5 minutes after injection, but 
a moderate concentration remained for 
1 hour after injection. The greatest 
radioactivity concentration in fetal or- 
gans was found at 30 minutes, with a 
significant amount remaining for at 
least 2 hours. The relatively high af- 
finity of LSD for the maternal organs, 
causing a rapid decrease in the blood 
concentration, may diminish the 
amount available for transfer into the 
fetus. 
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Carbon Monoxide-Induced 

Arterial Hypoxemia 

Abstract. Inhalation of carbon mon- 
oxide produces an increase in the 
alveolar to arterial oxygen gradient in 
the presence of veno-arterial shunts or 
ventilation-perfusion imbalance but has 
no such effect in normal subjects. The 
increase in the alveolar to arterial oxy- 
gen gradient with rising concentrations 
of carboxyhemoglobin results from 
changes induced by carbon monoxide 
in the shape of the oxyhemoglobin 
dissociation curve. 

Claude Bernard first pointed out that 
carbon monoxide (CO) produces hy- 
poxia through its reversible combination 
with blood to form carboxyhemoglobin 
(1). On combining with hemoglobin, 
CO causes a functional anemia by de- 
creasing the amount of hemoglobin 
available for carrying oxygen. In addi- 
tion, the sigmoid shape of the oxyhemo- 
globin dissociation curve is changed 
with increasing carboxyhemoglobin con- 
centrations ([COHb]) toward that of a 
rectangular hyperbola, with the result 
that hemoglobin gives up oxygen less 
readily in the tissues (2). Tissue hypoxia 
produced by these two factors is con- 
sidered to be the major process involved 
in clinical CO toxicity (1), although it 
is possible that direct effects of CO on 
tissue respiration are also important. 
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sidered to be the major process involved 
in clinical CO toxicity (1), although it 
is possible that direct effects of CO on 
tissue respiration are also important. 

There have been few studies of the 
possible effects of increasing [COHb] on 
arterial oxygen tension (Pao2) and on 
the alveolar-arterial oxygen gradient 
(A-a Do2). Until recently it was as- 
sumed that Pao2 was unchanged by in- 
halation of CO (1), but there had been 
no direct measurements of the effect of 
CO on Pao2 until Ayers, Giannelli, and 
Armstrong (3) presented evidence 
that Pao2 decreased in a group of 
patients who breathed concentrations of 
CO sufficient to produce [COHb] of 5 
to 10 percent. These authors later re- 
ported, in abstract form, large decreases 
in Pao2 and increases in A-a Do2 in dogs 
given higher concentrations of CO (4). 
As an explanation for their findings they 
postulated that "carboxyhemoglobin 
containing red blood cells may impose 
an abnormal barrier to diffusion of 
oxygen," or that a "decrease in capacity 
of the blood to carry oxygen can be 
shown to magnify the physiological 
veno-arterial shunting." 

In this report we have attempted to 
determine if arterial hypoxemia may be 
an additional cause of tissue hypoxia in 
CO poisoning and to define the possible 
mechanisms of such hypoxemia. 

The effects of the combination of CO 
with hemoglobin can be compared to 
the effects of anemia, since in both situa- 
tions the oxygen-carrying capacity of the 
blood is decreased. Figure 1 shows the 
upper portion of oxyhemoglobin dis- 
sociation curves calculated for the func- 
tional anemia resulting from increasing 
[COHb] and for the anemia resulting 
from decreased hemoglobin in the 
blood. An important difference between 
the two curves is that the sigmoid shape 
of the dissociation curve is changed with 
increasing [COHb] but is not altered with 
increasing degrees of anemia. It has 
long been recognized that the shape of 
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Table 1. Change in A-a Do2 with increased [COHb]. There were no significant changes in 
oxygen uptake, respiratory quotient, or alveolar ventilation following CO inhalation in any of 
the subjects. The right to left shunt was 24 percent of cardiac output in patient A.S. and 37 
percent cardiac output in patient G.S. The number of normal subjects is given in parentheses; 
S.D., standard deviation. 

[COHb] (%) A-a Do2 (mm-Hg) 
Subject . . _ .... 

Initial Final Initial Final 

Normals (5) 0.9 11.7 12.1 11.6 
S.D. + 0.1 - 4.7 4.9 ? 5.9 
P value <.005 > 5 

Shunt 
A.S. 2.1 12.8 36.5 46.9 
G.S.* 1.0 12.7 56.7 62.8 

V/Q 
J.J. 2.1 12.8 38.0 41.0 
R.G. 1.7 11.5 39.8 42.6 

* 2, 3-Diphosphoglycerate was elevated in this patient (8) which suggests that the oxyhemoglobin dis- sociation curve was shifted to the right (9). This shift might, in part, counteract the effect of [COHb] on A-a Do2. 
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may be accentuated by arterial hypox- 
emia in the presence of abnormal V/Q 
or veno-arterial shunts by the mecha- 
nisms described above. Arterial hypox- 
emia may even play an important role 
in CO poisoning of subjects with normal 

lungs if they develop V/Q imbalance or 
veno-arterial shunts when unconscious. 
The mechanisms of increased A-a Do2 
that we have described may also ex- 

plain a portion of the increased A-a Do2 
that has been reported in chronic 
smokers (7), since [COHb] of 5 to 10 

percent (levels commonly found in 

heavy smokers) may increase A-a Do2 
in the presence of shunts as small as 
2 percent. 
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