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The basic ferric phosphates, per- 
plexing substances in the mineral king- 
dom, occur as replacements of organic 
products, such as wood and bones; as 
nodules in marls and soils; as second- 
ary minerals in "limonite" beds and 
deposits of iron ore; and as hydrother- 
mally reworked products of primary 
lithium-iron-manganese phosphates in 
pegmatites. Conflict and contradiction 
have frequently appeared in the no- 
menclature and data reported for these 
phosphates. Frondel (1) presented a 
historical survey as well as informa- 
tion on the physical and chemical 
characters of these minerals. Fanfani 
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and Zanazzi (2) reported on the 
atomic arrangement of one member, 
beraunite. 

The basic ferric phosphates include 
the species dufrenite [Fe (OH) 3(H20) 
(PO4) ], rockbridgeite [Fe (OH) (O) 
(PO4) 3], laubmannite [Fe, (OH) 5 
(PO) j4, beraunite [Fe6(OH),6 (H20)3 
(P04)4 2H20], and cacoxenite [Fe4 
(OH)3(PO4)3- 12H20] (3). With the 
exception of cacoxenite, all occur as 
fibrous greenish-black to brown nod- 
ules, concretions, and mammillary ag- 
gregates. Their chemical analyses often 
show minor and irrational amounts of 
ferrous iron. Single crystals of suitable 
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dimension for crystallographic study 
are rare since the fibers usually consist 
of minute individuals in twisted bun- 
dles. Because the compositions and 
densities of these minerals are similar, 
physical, optical, or chemical charac- 
teristics alone do not suffice for certain 
identification. The list of species may 
be more extensive than the aforemen- 
tioned, since Frondel documented two 
possibly new species and one new spe- 
cies is being studied in my laboratory. 

Single crystals for all these species 
were isolated by carefully splitting fi- 
bers in acetone with a dissecting needle 
until an optically uniform individual 
could be found. Since the individuals 
were usually about 30 to 50 / in mean 
diameter, long-exposure rotation and 
Weissenberg photographs were required 
to obtain the data reported in Table 1. 
Three-dimensional analysis of the crys- 
tal structure was undertaken on du- 
frenite and rockbridgeite (4). Intensity 
data were collected on a manual coun- 
ter-diffractometer that operates on the 
basis of Weissenberg geometry with 
Zr-filtered Mol radiation for dufrenite, 
and on Weissenberg films with the same 
radiation for rockbridgeite. Atomic 
arrangements for these two species 
were determined by Patterson syntheses 
and vector set analysis of these data. 
Early refinement of atomic coordinates 
offers Rhkl = 0.18 (based on 1400 
independent observed structure ampli- 
tudes) and 0.19 (340 independent ob- 
served structure amplitudes) for du- 
frenite and rockbridgeite, respectively. 
Their octahedral frameworks are illus- 
trated in Fig. 1, A and B. 

A remarkable polyatomic complex 
common to the atomic arrangements of 
beraunite, dufrenite, and rockbridgeite 
(Fig. 2) consists of an iron-oxygen 
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Fig. 1. (A) Octahedral framework structure for rockbridgeite 
projected down the fiber axis. The face-sharing triplets link by 
means of shared terminal edges and octahedral corner-sharing 
doublets. (B) Octahedral framework structure for dufrenite 
projected down the fiber axis. The face-sharing triplets are con- 
nected by octahedral corner-sharing triplets. 
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Basic Ferric Phosphates: A Crystallochemical Principle 
Abstract. A polyatomic complex of iron-oxygen octahedral face-sharing triplets 

corner-linked to four other octahedra occurs in the atomic arrangements of the 
basic iron phosphates dufrenite, rockbridgeite, beraunite, and laubmannite. This 
complex is further knit together by the phosphate tetrahedra. The family of basic 
ferric phosphates arises from the variety of ways in which the complexes can be 
linked along a third "variable" crystallographic axis. 
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Table 1. Crystal data for the basic ferric phosphates (5). 

No. of 

Basic Spe- for- 

ferric a b c Space cific mula 
(A) (A) (A) -/ group gray- units 

ity per cell 
(Z) 

Dufrenite 25.59 5.14 13.78 111024' C2/c 3.34 8 

Rockbridgeite 13.85 16.82 5.18 Bbnmm 3.49 4 

Laubmannite 13.91 30.60 5.15 Pbma 3.33 4 

Beraunite 20.646 5.129 19.213 93037' C2/c 3.08 4 

Cacoxenite 27.66 10.65 P6/mmm(?) 2.26 12 
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octahedral face-sharing triplet, linked 
by corner-sharing to four other octa- 
hedra. The cluster of seven octahedra 
is knit together by phosphate tetrahe- 
dra. In fact, all the phosphate tetra- 
hedra in these minerals are linked to 
the polyatomic complex. 

This complex appears to occur in 
the other basic ferric phosphates as 
well. Inspection of the cell data (Ta- 
ble 1) reveals that all members have 
a common fiber axis of - 5.1 A as 
well as another crystal axis of ~ 13.8 
A. Preliminary Patterson synthesis on 
the hkO data of laubmannite reveals 
the same polyatomic complex in pro- 
jection as that found for the three other 
species studied. 

The family of basic ferric phosphates 
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Fig. 2. The polyatomic complex common 
to the crystal structure of the basic ferric 
phosphates projected down the fiber axis. 
The seven octahedra are stippled; shared 
faces in the octahedral triplet are drawn 
bold. The phosphate tetrahedra are cen- 
tered on phosphorus and the P-O distances 
are drawn bold. The direction of the 
- 13.8-A cell repeat is designated; the 
directions of the octahedral corner-sharing 
chain segments are shown by four short 
arrows. The locations of the phosphorus 
atoms in Fig. 1, A and B, can be found 
by superimposing Fig. 2 upon them. 
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arises from the variety of ways in 
which the complex can be linked along 
the third "variable" crystallographic 
axis. The linking units are corner- 
sharing octahedral chain segments, ex- 
tending along the directions of the 
four arrows shown in Fig. 2. In ber- 
aunite, the chain segments are one and 
two octahedra in length; in rockbridge- 
ite, two octahedra; in dufrenite, three 
octahedra; and, tentatively, in laub- 
mannite, four octahedra. 

Once these data have been refined 
so that accurate interatomic distances 
can be obtained, the oxidation states 
of the iron atoms over the independent 
sites can be determined. It appears 
likely that the deep greenish-black 
color and pronounced pleochroism of 
these minerals arise from mixed val- 
ences in the face-sharing triplet, and 
this cluster may also result in peculiar 
magnetic and electric properties for 
these substances. Since their crystal 
chemistry can be placed on an abso- 
lute basis, perhaps even a direct link 
can be established between their para- 
genesis and their crystallochemical 
interrelations. 

PAUL B. MOORE 

Department of Geophysical Sciences, 
University of Chicago, 
Chicago, Illinois 60637 
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pretations. In cacoxenite a/2 = 13.83 A and 
c/2 = 5.32 A. In beraunite, one-half the obtuse 
diagonal for a and c -= 13.65 A, in agreement 
with the orientation of the polyatomic com- 
plex in that structure. 
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Cuprous Complexes Formed with 

Isonicotinic Hydrazide 

Abstract. Chelate formation by Cu(II) 
and isonicotinic acid hydrazide has 
been postulated as an important step 
in the antitubercular activity of isonico- 
tinic hydrazide (Isoniazid). Reevalua- 
tion of the copper-isonicotinic hydra- 
zide system gives evidence for the 
formation of a Cu(I) species rather 
than a Cu(II) species. The reduction of 
Cu(II) to Cu(I) and the subsequent 
formation of an isonicotinic hydrazide 
complex with the latter ion, therefore, 
may be the critical reaction responsible 
for the efficacy of isonicotinic hydra- 
zide against Mycobacterium tubercu- 
losis. 

Isonicotinic acid hydrazide serves as 
a fundamental drug in the treatment 
of tuberculosis. Cupric ion enhances 
the in vitro activity of isonicotinic acid 
hydrazide against Mycobacterium tu- 
berculosis (1). Studies of the cupric 
ion-isonicotinic hydrazide system (1-3) 
have indicated that cupric ion forms 
1:1 and 2:1 bidentate complexes 
(chelates) with isonicotinic hydrazide. 
These reports point to! a copper-iso- 
nicotinic hydrazide complex as the cu- 
rative agent (3) or as a critical agent 
in the antitubercular activity. 

Early reports on the existence of 

cupric-isonicotinic hydrazide chelates 
(1, 2) were based on spectrophoto- 
metric measurements (according to 
Job's method) and an observed drop 
in pH on mixing the metal ion and 
hydrazide. An equilibrium constant for 
the overall formation of the 2:1 che- 
late was calculated from the data 
(K = 1.7 x 10 ); the constant was 
dependent on pH, however. The same 
system was studied (3, 4) by a poten- 
tiometric pH method, and the stability 
constant for the charged 1:1 complex 
(1 x 108) was obtained. Three other 
metal ions also were studied, Ni(II), 
Co(II), and Zn(II); the stability con- 
stants for all three ions were several 
orders of magnitude smaller than that 
for copper. 

All of the reports cited thus far in- 
dicate that isonicotinic hydrazide com- 
plexes by a chelation mechanism; that 
is, the anion is the complexing species 
and protons are released in the overall 
complexation reaction 
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2RH + M2-:R2M +2H+ 2RH + M2-:R2M +2H+ (1) (1) 

where RH is isonicotinic hydrazide and 
M represents metal ions such as Cu(II), 
Ni(II), Co(II), and Zn(II). However, 
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