
synthetase cannot charge E. coli tRNA 
with leucine and E. coli leucyl-tRNA 
synthetase cannot charge liver tRNA. 
The fact that the plasmodial enzyme can 
charge tRNA from both sources sug- 
gests that the major structural change 
with respect to the enzyme and its 

recognition site on the tRNA is inborn 
in the enzyme. It was shown that malar- 
ial parasites can take up host cytoplasm 
by pinocytosis (7). Therefore, the lack 
of charging specificity may permit the 

parasite to use host tRNA for its pro- 
tein synthesizing system. However, 
tRNA is synthesized very rapidly in 
P. berghei in vivo (8). 

Aminoacyl tRNA synthetase activity 
was found in the P. berghei extract for 
the following amino acids: tyrosine, 
histidine, valine, proline, threonine, and 

lysine (Table 1). High synthetase 
activity was observed for valine and 

lysine. Relatively high endogenous ac- 

tivity (without added tRNA) was re- 

corded for almost all amino acids tested. 

However, when the extract was treated 
with 0.1 volume of 2 percent strep- 
tomycin sulfate, centrifuged for 15 
minutes at 30,000g to remove RNA, 
and then passed through a Sephadex 
G-25 column, no endogenous activity 
could be observed and there was an 
absolute dependency on added tRNA. 

It should be emphasized that the de- 

terminations of aminoacyl-tRNA syn- 
thetase activities for the above amino 
acids were carried out under conditions 
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A circadian rhythm in the rate of 

spontaneous impulses from an isolated 

eye has not been described for any 
animal, although a rhythmic migration 
of pigment occurs in the compound 

eyes of intact arthropods (1). The eyes 
of certain beetles show a "diurnal 

rhythm" (circadian) in electrical re- 

sponse to illumination (2). The circa- 

dian rhythm was thought to be a conse- 

quence of pigment migration. Recently, 
the response of the "sustaining" fibers 
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optimum for leucyl-tRNA synthetase. 
For example, in E. coli the optimum 
ratio of magnesium ion to ATP for 

leucyl-tRNA synthetase is 10 while the 

optimum ratio for the prolyl-tRNA 
synthetase is 30 (9). 

Pyrimethamine, hydroxystilbamidine, 
quinacrine, and acriflavine inhibit the 
esterification of valine with tRNA signi- 
ficantly at a concentration as low as 
0.1 mM (Table 2). Chloroquine was 
without effect. Elucidation of the reac- 
tions leading to protein synthesis in 
malarial parasites may explain the spec- 
ificity of certain drugs and provide the 
rationale for the synthesis of new ones. 
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of the optic nerve of the intact crayfish 
to light flashes has been demonstrated 

to show a circadian rhythm as well as 

the electroretinogram (ERG) (3). In 

the crayfish the analysis of the origin 
of the rhythm is complicated by the 

probable influence of several systems 
within the animal. 

The isolated eye and optic nerve of 

Aplysia, described here, has a circadian 

rhythm of optic nerve activity when 

kept in constant darkness. Eighteen 
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rhythm of optic nerve activity when 

kept in constant darkness. Eighteen 

eyes removed from animals that had 
been subjected to either constant white 
fluorescent light (LL) of 195 lux or 
light-dark cycles (LD, 12 hours light 
to 12 hours dark) of 165 lux to 0 lux, 
were used in the experiments. The du- 
ration of the exposure to either of these 
conditions varied from 2 to 10 days. 
The animals were kept in groups of 4 
to 50 at 14? to 15?C in tanks of sea- 
water (380 liters) that were part of a 
5680-liter circulating system. They were 
killed at various times during the day 
in order to test for the complication of 
dissection time as a factor in the 
rhythm. The optic nerves were severed 
at the cerebral ganglion, and the eyes 
were removed from the surrounding 
body wall tissues, leaving 1 cm of optic 
nerve and the attached eye as the iso- 
lated preparation (4). Dissection, per- 
formed under white light or red light 
from a 6-volt lamp, was completed in 
15 to 20 minutes. The eye was placed 
in a 100-ml chamber thermostatically 
regulated at 15?C and containing either 
seawater filtered through millipore fil- 
ters (0.22 1t) or sterile culture medium 
(5). This culture medium contained 

Eagle's minimum essential medium 
made up in seawater consisting of 20 

percent filtered Aplysia blood. The me- 
dium was buffered at pH 7.8; it main- 
tained normal electrical activity of the 
parieto-visceral ganglion of Aplysia for 

up to 6 weeks (5). 
The eye was stapled through periph- 

eral connective tissue to a silastic plat- 
form, and the severed end of the optic 
nerve was picked up in a suction elec- 
trode consisting of Intermedic polyeth- 
ylene tubing (PE 20) for recording. The 
electrical activity was led off by a stain- 
less steel needle and amplified by a 
Tektronix 122 preamplifier, monitored 
on an oscilloscope, and recorded with 
a Grass polygraph. Usually two eyes, 
either from the same animal or differ- 
ent animals, were tested in the same 

chamber, but as many as four were 
sometimes tested together. The surface 
of the chamber was left open to permit 
free gas exchange during the 1 to 3 

days of continuous recording. Special 
precautions were taken to insure condi- 
tions of total darkness during the re- 

cording sessions. After the recording 
apparatus was properly functioning, the 
chamber was sealed inside a double 

light-tight box. This was usually com- 
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had started. 
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Circadian Rhythm of Optic Nerve Impulses 

Recorded in Darkness from Isolated Eye of Aplysia 

Abstract. The isolated eye of the sea hare Aplysia californica shows a circadian 

rhythm of optic nerve impulses when kept in total darkness. Peak activity on the 

first day of isolation occurs during the projected "dawn" of the light-dark cycle 

to which the whole animal had previously been entrained. Eyes from animals 

previously exposed to constant light show a free-running rhythm. This simple 

photoreceptor provides a quantized output with an ideal control (the other eye) 

for studies on rhythms. 
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Fig. 2. Plots of the frequency of impulses 
over several days in total darkness. (A) 
The eyes were tested in the same chamber 
in filtered seawater. The upper graph is 
that of an LL (13 days) eye; the lower 
is that of an LD 12:12 (8 days) eye. The 
black arrows on the time axis indicate the 
projected DL transition time for the LD 
eyes in (A) and (B). (B) A pair of LD 
12:12 (8 days) eyes from the same animal 
in culture medium. 

(that is, locomotion) and the activity 
of specific central neurons. The phase 
of the eye rhythm is re-settable at each 
dawn and thus the eye could set the 
phase of other coupled rhythms. 

The site of the oscillator in the iso- 
lated eye is yet undetermined but it is 
clearly not due to pigment migration 
(setting-eye sensitivity) since the im- 
pulse rate was studied in total dark- 
ness. The presence of neurosecretory 
processes in the retina (4) may have 
significance for the rhythm (9) either 
as conductors of photic stimuli to other 
systems or as a modulator of retinal 
excitability. 
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