
Table 1. Crystal data of deamino-6-seleno-oxytocin with dearuino-oxytocin. 

Unit cell dimensions Measured 
Forma b c Space density (D) a b ? fi V group (g/CM3) (A) (A) (A) (deg) (10A3) g/cm) 

Deamino-6-seleno-oxytocin 
Wet 27.1 9.1 23.0 102.2 5.54 C2 1.36 

Deamino-oxytocin* 
Wet 27.3 9.07 23.1 102.4 5.60 P21 1.305 
Dry 28.1 9.43 24.5 124.0 5.38 C2 1.328 

*Data from (1). 
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of a more substantial size (0.5 by 0.08 
by 0.03 mm) have been secured from 
an ethanol-water mixture. These crystals 
are monoclinic laths, elongated along 
the b-axis, lying on (001). Preliminary 
x-ray photographic studies with CuKa 
radiation showed that the unit cell 
dimensions (Table 1) of these crystals 
are comparable to those of the "wet" 
form of deamino-oxytocin (1). In addi- 
tion, the density of these crystals, deter- 
mined by flotation, is compatible with 
that of the "wet" form of deamino- 
oxytocin. Nevertheless, the analogs 
crystallize in different space groups: 
deamino-6-seleno-oxytocin in C2 and 
deamino-oxytocin in P21. However (1) 
the diffraction pattern of "wet" deamino- 
oxytocin showed marked pseudo face- 
centering related to the space group C2. 
In fact, a comparison of the diffraction 
patterns of all three principal planes 
and two general planes of the crystals 
of these analogs showed such similarity 
that we believe that the overall con- 
formations of both peptide molecules 
are alike. 

In contrast to the "wet" crystals of 
deamino-oxytocin, those of the selenium 
analog do not lose crystal water upon 
prolonged exposure to air or upon soak- 
ing in xylene, as manifested by the con- 
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the diffraction pattern. Therefore the 
collection of intensity data is facilitated. 

Avian vasodepressor assays (5) re- 
veal that the biological activities re- 
mained unchanged during x-irradiation, 
indicating that deamino-6-seleno-oxy- 
tocin is essentially stable to x-rays. 
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Estimating Proportions in Petrographic Mixing Equations by 

Least-Squares Approximation 

Abstract. Petrogenetic hypotheses involving fractional crystallization, assim- 
ilation, or mixing of magmas may be expressed and tested as problems in least- 
squares approximation. The calculation uses all of the data and yields a unique 
solution for each model, thus avoiding the ambiguity inherent in graphical or 
trial-and-error procedures. The compositional change in the 1960 lavas of Kilauea 
Volcano, Hawaii, is used to illustrate the method of calculation. 
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duced. Graphical constructions or trial- 
and-error calculations (1, 2) have some- 
times been used to test the ability of the 
proposed mechanism to produce the ob- 
served compositional changes. Consistent 
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symbolic formulation of the problem 
shows at once that it fits readily into the 
framework of least-squares approxima- 
tion. As in the graphical and trial-and- 
error methods, the objective of the least- 
squares analysis is to determine whether 
an assumed residual liquid might be 
derived from an assumed parent magma 
by removal or addition of components 
which have the compositions of mineral 
phases or contaminants such as wall 
rock or xenolith material. Although 
graphical or trial-and-error solutions are 
restricted to problems having only three 
or four components, this very serious 
limitation does not apply to the least- 
squares solution. 

In this discussion xij is the observed 
amount of the ith oxide in the jth com- 
ponent, where i= l,n, and j= l,k; yi 
is the observed amount of oxide i in the 
composition to be approximated; b. is 
the estimated amount of component j 
required; and y^ is the estimated amount 
of oxide i. 

For each of the n oxides we may thus 
write a linear equation containing one 
term in yi and k terms in bjxij, or, in 
matrix notation 
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and 

Y' = [Y1,y2,y3 * * yn,] (2c) 

where B' and Y' are, respectively, the 
transposes of the column vectors B and 
Y. 

Interpretations of the results of con- 
ventional subtraction diagrams or their 
numerical analogues (3) are rarely free 
of ambiguity. Usually the number of 
oxides (n) is considerably greater than 
the number of components (k), but 
graphical and numerical procedures pro- 
posed thus far require that the number 
of oxides used in any solution be equal 
to or less than k. 

Using any of these methods, the 
petrologist must work with no more 
than k of the n rows of Eq. 1 in any 
particular solution; each solution thus 
ignores at least (1 - k/n) of the avail- 
able information. Any of the unused 
rows of Eq. 1 which are linear combi- 
nations of those used in a solution are 
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redundant; any which are not redun- 
dant are contradictory; that is, they 
are not satisfied by the solution. The 
number of contradictory solutions ob- 
tainable from a particular set of data 

rapidly becomes excessive, for k rarely 
exceeds 5, but n varies from 8 to 11, 
depending on whether MnO, TiO2, and 
P205 are regarded as essential constitu- 
ents in a complete silicate analysis. If, 
for example, k = 5 and n = 8 there will 
be 8!/5!3! = 56 possible sets of oxides 

upon which to base graphical subtrac- 
tion diagrams or their numerical coun- 

terparts. Barring singularity, which 
should be quite uncommon, each of 
these sets will yield an exact solution- 
that is, one in which (y - y) = 0 to 
within rounding error-for each of the 
oxides used. 

This agreement is purely tautological, 
however, showing only that the set 
chosen is one for which a solution ex- 
ists. If oxide i is not used as control in 
any of a set of graphical solutions (or 
row i of Eq. 1 is not used in the analo- 

gous calculations), each y^ obtained is 
an estimate of yi, though a rather in- 
direct one. Presumably, an objective 
comparison of the quality of these esti- 
mates could be developed. In most prac- 
tical situations, however, there is little 
reason for preferring one set of vari- 
ables to another, and a method yield- 
ing a single solution based on all the 
data would be preferable to one yield- 
ing many different but not independent 
solutions, each based on only part of 
the available information. The least- 

squares approximation does in fact give 
a single solution based on all the data, 
and our choice of notation makes it 
obvious that the problem can be for- 
mulated as one in least-squares approxi- 
mation (4). Premultiplication of Eq. 1, 
the equations of condition, by the 
transpose of X gives the normal equa- 
tions 

X'XB = X'Y (3) 

and premultiplication of the normal 
equations by the inverse of [X'X] yields 
the desired solution, namely 

A 

B = [X'X]-X'Y (4) 

There is only one such solution, and 
it exists only when n k; the inequal- 
ity denotes the common situation, in 
which graphical methods and their nu- 
merical analogues fail to yield unique 
solutions. If we now substitute B from 
Eq. 4 in the left side of Eq. 1 and per- 
form the indicated multiplication, we 
obtain a vector Y which is the least- 
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Table 1. Composition of 1960 lava glass E of 
Kilauea Volcano, Hawaii. Column A repre- 
sents an estimate of oxide weight percent- 
ages, Y, and parent magma (glass D) and 
mineral weight percentages, B, based on 
graphical constructions. Column B gives the 
analogous weight percentages obtained from 
the least-squares calculation. Column C is 
the actual chemical analysis of glass E, Y. 
Graphical estimates and all data used in the 
least-squares calculation are from Murata 
and Richter (2, p. 17, Table 5, columns 1, 4, 
5, 6, 7, and 8). 

Oxide A B C 

SiO2 
A12Oa + Cr2,O 
FeO 
MgO 
CaO 
Na20 
K20 
TiO2 
P20, 
MnO 

Sum 

Oxides 
50.75 
13.50 
12.60 
5.78 
9.84 
2.65 

.74 
3.57 
.38 
.19 

100.00 

50.89 
13.63 
12.56 
5.77 
9.89 
2.67 

.74 
3.56 
.38 
.19 

100.28 

50.96 
13.58 
12.45 
5.77 
9.77 
2.60 

.72 
3.58 
.39 
.18 

100.00 

Parent magma and mineral proportions 
Basalt glass D 123.30 123.07 
Augite -10.00 -10.02 
Plagioclase -11.00 -10.46 
Olivine - 2.30 - 2.30 

Sum 100.00 100.29 

Sum of squares of oxide residuals 
(yi- Y)O .0812 .0396 

squares approximation of Y; that is, 
the elements of Y are those which 
minimize the quantity 

S- = (y,-y )2 (5) 
i=1 

the sum of squares of the residuals. 
Results obtained thus far provide a 

convenient, consistent, and intuitively 
appealing summary or description of the 
data. If the analysis is to be carried 
further, allowance must be made for 
the fact that the elements of Y are not 
known to be either homogeneous in 
variance or uncorrelated. Knowledge 
or reasonable assumption about the ele- 
ments of the (true or theoretical) co- 
variance matrix of the y's is indispen- 
sable if the sample statistics are to pro- 
vide meaningful estimates of the errors 
attaching to the elements of Y and B. 
Reasonable assumptions about the rela- 
tive magnitudes of the parent variances 
of Y may sometimes be made, but a 
priori information about its covariances 
is nearly always inadequate, if not en- 
tirely lacking. In its absence the least- 
squares approximation must serve pri- 
marily as a scheme for data reduction. 

Compositional changes in the lava of 

Kilauea Volcano during the 1960 erup- 
tion have been investigated by Murata 
and Richter (2) with the aid of graphi- 
cal constructions. They demonstrated 
that removal of suitable amounts of 
clinopyroxene, plagioclase, and olivine 
from their assumed parent magma (2, 
Table 5, glass D) could yield a liquid 
having the composition of their as- 
sumed residual liquid (2, Table 5, glass 
E). This composition and the propor- 
tions of parent magma and minerals re- 
quired to generate it are given in col- 
umn A of Table 1. For the least-squares 
solution, the columns of matrix X (Eq. 
1) represent the chemical compositions 
of glass D, clinopyroxene, plagioclase, 
and olivine; the dependent vector Y is 
the chemical composition of glass E to 
be determined by least-squares approxi- 
mation. The vector of weight fractions 
(B) is obtained from Eq. 4 and sub- 
stituted in the left side of Eq. 1 to 
yield the least-squares estimate Y. 

The result (column B, Table 1) is in 
excellent agreement with that of Murata 
and Richter. Such close agreement 
should not be expected in every com- 
parison, and least-squares solutions dif- 
fering markedly from graphical solu- 
tions or nonnumerical expectations are 
to be anticipated. The principal advan- 
tage of the least-squares solution is not 
that it agrees or disagrees with earlier 
work, but that it utilizes all the data in 
a systematic and widely accepted fash- 
ion. In other procedures, inadequacies 
of the model are confounded with un- 
certainties arising from the fact that 
only a part, usually a small part, of 
the available information contributes to 
any particular solution. In contrast, a 
least-squares calculation that does not 
give a satisfactory solution is a clear 
indication that the underlying model is 
at fault. 
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Washington, D.C. 20008 
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