
At 1 mg/liter GA slightly enhanced 
the speed with which plantlets appeared, 
but did not improve the final percentage 
of stamens producing embryos. It did 
not allow younger stages (such as stage 
1) to produce more embryos (Table 1). 
At 1 mg/liter, GA caused an abnormal 
elongation of the hypocotyl and pro- 
duction of spindly, chlorotic plantlets. 

Abscisic acid (ABA) from 10-7 to 
10-5M did not reduce the percentage 
of stamens producing plantlets, but 'it 
delayed their development markedly. 
In the presence of 10-6M or more of 
ABA, the embryos formed were shorter 
and thicker than the controls and re- 
mained in an ungerminated condition 
for at least 2 months (see above the 
three criteria for germination) by which 
time the controls had developed into 
plantlets with green leaves, reaching 5 
cm in height. 

In some experiments, addition of L- 
glutamine or of L-asparagine at 1 to 
3 X 10-3 M stimulated the production 
of plantlets from excised stamens. 
L-arginine, at the same concentrations, 
was completely inhibitory. The purine 
and pyrimidine constituents of nucleic 
acids gave variable results, adenine (at 
1 to 3 X 10-4M) being generally in- 
hibitory. Addition of all the bases to- 
gether (10-4M of each) did not im- 
prove the percentage iof stamens pro- 
ducing plantlets. 

The fact that the male prothallus can 
proliferate and form embryos explains 
certain abnormalities reported in the 
literature. Thus haploid plants which 
had only the characters of the male 
parent have been obtained in crossing 
N. digluta by N. tabacum (4) or N. 
tabacum macrophylla by N. langsdorf- 
fii (5). In these cases, androgenesis 
probably occurred in the embryo sac. 
This natural tendency may be increased 
to such a degree by the present method 
that it is a practical way to produce 
haploid tobacco plants at will (6). 
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There has been speculation on the 
evolutionary significance of the amount 
of DNA in diverse plant and animal 
cells (1-3). Most data on DNA as a 
function of cell size deal with bacteria 
or with vertebrates or higher plants. 
Commoner (4) has postulated that 
DNA plays important physiological 
roles in addition to its role as the 
template for genetic information, and 
that DNA content of a cell should be 
proportional to cell size. To test the 
hypothesis that DNA is directly pro- 
portional to cell size, it is essential to 
use cells which are closely related 
phylogenetically and which are similar 
in physiology and nutrition. These 
criteria are met by eukaryotic, unicel- 
lular algae that are growing photo- 
autotrophically. The smallest cells used 
in this investigation (Monochrysis lu- 
theri and Navicula pelliculosa) con- 
tained approximately 10 pg of organic 
carbon and 0.1 pg of DNA per cell, and 
the largest cells (Gonyaulax polyedra) 
contained 6000 pg of carbon and 200 pg 
of DNA per cell. The DNA content 
per cell therefore is nearly directly 
proportional to cell size as determined 
by total organic carbon content. Be- 
cause these cells could be expected to 
require about the same amount of 
DNA-template information, the large 
variations in DNA per cell (up to 2000 
times) indicate that DNA does much 
more than merely convey genetic in- 
formation in the cell. 

The ten species of unicellular algae 
used were unialgal, bacteria-free cul- 
tures grown as described (5, 6). 
Samples of the algal suspensions were 
filtered through HA (0.45-jt pore size) 
Millipore filters, and the cellular con- 
tents of DNA were determined by a 
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6. While this paper was being processed for 
publication, it came to our attention that 
K. Nakata and M. Tanaka [Jap. J. Genet. 
43, 65 (1968)] had also obtained embryos 
from cultured anthers of N. tabacum. Their 
highest reported yield of 6 percent falls short 
of the yield of embryo-producing anthers (45 
percent) reported here. 
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seron for a sample of cis-abscisic acid. Photo- 
graphs taken by B. Norreel; the microscopic 
preparations of Fig. 3 made by S. .Hamon. 
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fluorometric measurement with 3,5- 
diaminobenzoic acid dihydrochloride. 
This procedure is based on that of Kis- 
sane and Robbins (7), with modifica- 
tions for laboratory cultures of phyto- 
plankton (8). Samples of algal sus- 
pensions were also filtered through 
glass fiber filters and the total cellular 
organic carbon was determined by mea- 
surement of CO2 by infrared gas 
analysis after complete combustion of 
the sample by wet oxidation (9). Cell 
counts were determined with a Coulter 
model A particle counter. 

There is nearly a direct proportional- 
ity between cell size and content of 
DNA in these species (Fig. 1). These 
values represent total cellular DNA and 
thus include nuclear DNA as Well as 
any extranuclear DNA. It is unlikely, 
however, that the observed correlation 
between DNA content and cell size can 
be attributed solely to extranuclear 
DNA. The amount of DNA in mito- 
chondria and chloroplasts generally ac- 
counts for only a few percent of the 
total cellular DNA. In Euglena gracilis, 
for example, the DNA of the mito- 
chondria and the plastids together 
amounts to less than 5 percent of the 
nuclear DNA, as judged by micro- 
densitometer readings of ultraviolet- 
absorption photographs of DNA sep- 
arated on cesium chloride density gra- 
dients (10, 11). Studies with chloro- 
plast-containing flagellates and with 
their colorless counterparts also show 
that the amount of DNA contained in 
the chloroplasts is minor compared to 
the amount in the nucleus (10). There- 
fore the correlation between cell size 
and DNA (Fig. 1) is caused predomi- 
nately by varying amounts of nuclear 
DNA. Microscopic examination of 
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Algae: Amounts of DNA and Organic Carbon in Single Cells 

Abstract. An analysis of ten different unicellular algae, varying in size and 
containing from 10 to 6000 picograms of carbon per cell, indicates that the 
amount of DNA per cell is in direct proportion to cell size. The content of DNA 
is equal to approximately 1 to 3 percent of the cellular organic carbon. 
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containing from 10 to 6000 picograms of carbon per cell, indicates that the 
amount of DNA per cell is in direct proportion to cell size. The content of DNA 
is equal to approximately 1 to 3 percent of the cellular organic carbon. 



man and Shapiro (3) have written "a 
larger cytoplasm would require a larger 

/Jr number of metabolic units, such as 
enzymes, to perform a certain func- 
tion, and if the genetic factors that 

- control the formation of these units 
operate at a relatively slow rate, more 
of these factors would be required." 
Such a redundancy of certain DNA 

c d segments has been described by Britten 
and Kohne, who report that the ge- 

- ,a b nomes of some organisms contain hun- 
dreds of thousands of copies of certain 
DNA sequences (17). A correlation be- 
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synthesis during oogenesis, after which 
the extra ribosomal DNA copies are 
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icates that the volume of the lated (4) that DNA has two main 

also increases proportionally roles: (i) It conveys genetic informa- 
size (6, 12). tion through its action as a template 
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id vertebrate cells (1) show mass determinations in ecological stud- 
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contain only about 6 pg of tion of biomass may be limited to some 
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or biochemical and physio- biomass indicator in ocean samples (8). 
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DNA required per cell does not directly 
reflect the amount of template informa- 
tion required by the cell, but rather it 
reflects rate-limiting reactions between 
the nucleus and the cytoplasm. A simi- 
lar conclusion (1) has been suggested 
previously by comparison of DNA con- 
tents of bacteria and vertebrate cells. 
Thus, Mirsky and Ris (1) have stated 
that "the variations in DNA content 
per cell in vertebrates would hardly 
seem to be due simply to differences 
in the number of genes," while Brawer- 
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