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Palynol. 3, 277 (1967)], but this phenomenon 
does not appear important at Frains Lake, 
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therefore could not have served as a source 
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8. Written results of experiments in which tra 
have been placed at various levels betwee 
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Wedge Dislocation as the Elastic Counterpart 
of a Crystal Deformation Twin 

Abstract. A crystal deformation twin may be visualized to form and grow I 
the movement of partial dislocations only if the twinning dislocations a; 
especially distributed to give an invariant shear. One consequence of this requir 
ment is that, if a critical resolved twinning stress exists in the same sense f 
twinning as for slip, this stress depends on the reciprocal thickness of the twi 
This type of model for twinning may be developed through the use of relative 
unknown disclinations, in particular, the wedge dislocation. 
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these dislocations are produced may 1 
expressed as 

Aui : b + dij x ( 

where i,j --1,2,3; b1 is a polar vect, 
which specifies the relative translati 
of the surfaces; d+j is an axial vect 
which specifies their relative rotatio 
and xj is the position vector. Only tv 
of the three dislocations characteriz' 
by be, their Burgers vector, are uniqu 
and these, which are termed edge ai 
screw dislocations, are widely used 
theories of crystal plasticity. Only tv 
of the three dislocations specified 1 

dij, which are now called disclinatio 
corresponding to a rotation parallel 
normal to the dislocation line, are al 
unique. The screw disclination, or wed 
dislocation, is shown in Fig. 1. The 
dislocations have not been used ve 
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for twinning. 

* A number of the features of a crystal 
deformation twin (2) have been modeled 
as in Fig. 2. The twinned volume is 
enclosed within the solid horizontal lines 
of the cylindrical section shown on the 
right side of the figure. The twin is 
composed of successively aligned dis- 

y locations, each having a partial lattice- 
re displacement vector b1 separated in the 
.e vertical direction by the interplanar 
or spacing b2. The twinning shear, 712, is 
W. given by the ratio (bl/b2). The stress- 
,y concentrating properties of this model 

for a twin have been described in terms 
of a multiple Burgers vector dislocation 

be (3). The work W, done by an external 
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duced on the set of surfaces Es by dis- 
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and the incoherent surface energy of the 
interfaces of the twin is neglected. The 
incremental work done by the external 
stress on altering the twin dimension in 
the shear direction Xi may be expressed 
in terms of the number of partial dis- 
locations in composing the twin as 

8W( bw,:t2n(dX, X di3) (3) 

From Eq. 2, the force dFP acting to 
produce this displacement is given by 

(FI nb1 W X dl. (4) 

Since 
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where t is the twin thickness, the force 
per unit length acting on the twin is 

(dF:/dla) 7- 2t (5) 

If it is presumed that a critical resolved 
shear stress for deformation twinning 
7CRTS exists by virtue of a constant force 
per unit length acting on the twin, as 
has been argued for the slip process 
(4), then TCRTS is inversely proportional 
to the twin thickness. 

Thus the invariant twinning shear is 
the essential feature of a deformation 
twin. This feature makes the second 
type of dislocation (Eq. 1 and Fig. 1) 
usefutl for developing a more complete 
model for deformation twinning. The 
simple shear displacements associated 
with the wedge dislocation (Fig. 1) may 
be derived from the equations of equi- 
librium for this body, because a simple 
shear is composed of a rotation plus 
a pure shear (5). If the terms resulting 
from the conditions at the surface 
boundary are neglected 

l : (d12/2'r2 ) { -x2 tan- (1/x2) 
[(1 - 2v)/4(1 - v)] X Iln (X12 + X22)} 

(6) 
where v is Poissons ratio. The terms in 
Eq. 6 are a multiple combination of 
several of those in the complete solu- 
tions of the displacements for a single 
edge dislocation (6). Figure 3 shows the 
simple shear displacements which pro- 
duce the twin. Further properties of a 
deformation twin may be directly deter- 
mined through a complete analysis of 
these wedge dislocations. 
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Mass of Pluto Mass of Pluto 

Abstract. Analysis of the observa- 
tions of Neptune indicates a reciprocal 
mass of Pluto of 1,812,000 (0.18 Earth 
masses). If the density is the same as 
that of Earth, the diameter would be 
7200 kilometers. If 6400 kilometers is 
accepted (from other sources) as the 
upper limit of the diameter, then Pluto 
must be at least 1.4 times as dense as 
Earth. 

One of the outstanding discordances 
among the solar system constants is the 
inconsistency between the physically 
measured diameter of Pluto and the 
dynamical determination of the mass 
of Pluto from its perturbation of the 
motions of Neptune and Uranus. Mea- 
surement of the disk of Pluto by Kuiper 
(1), using the 200-inch telescope, re- 
vealed an apparent semidiameter of 
0.23 arc sec with an internal consist- 
ency of ? 0.01 arc sec. Use of the 
adopted value of the astronomical unit 
in kilometers, leads to a value of the 
diameter of Pluto of 5928 km. More 
recently, from a near occultation of a 
15th-magnitude star by Pluto, Halliday 
et al. (2) determined an upper limit to 
the diameter of Pluto of 6400 km. If 
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Fig. 1. Two-dimensional view of the orbits 
of Neptune and Pluto. 0, node; H, peri 
helion; % vernal equinox. 
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we use the direct measurement, or the 
upper limit, for the diameter of Pluto 
and then assume that the density of 
Pluto does not exceed the density of 
Earth, the corresponding values for the 
mass of Pluto would be 0.10 or 0.13 
Earth masses, respectively. If, on the 
other hand, the dynamical determina- 
tion of the mass of Pluto by Wylie (3) 
of 0.91 Earth masses (Sun/Pluto = 

360,000), based on an analysis of the 
motion of Neptune, or the determina- 
tion by Brouwer (4) of 0.82 Earth 
masses, based on the motion of both 
Uranus and Neptune, is utilized in com- 
bination with the above measurements 
of the diameter, the mean density of 
Pluto would have to be at least 40 
g/cm3. 

The discovery of Neptune in 1846 
was one of the triumphs of celestial 
mechanics. Both Leverrier and Adams, 
on the basis of the departure of obser- 
vations of Uranus from gravitational 
theory, were able to predict the pres- 
ence and location of Neptune. Although 
the presence of a trans-Neptunian 
planet was long suspected, Wylie's 
analysis (3) has shown that its location 
could not be predicted gravitationally. 
The discovery of Pluto in 1930 must 
be considered as being due more to an 
intensive astrometric search than to any 
prior knowledge of position from gravi- 
tational theory. 

The orbits of Neptune and Pluto 
form an interesting system. As shown 
in Fig. 1, it appears that the orbit of 
Pluto actually crosses the orbit of Nep- 
tune near perihelion, but, while Nep- 
tune's orbit lies principally in the plane 
of the ecliptic, the orbit of Pluto is 
inclined to this plane by 17?. An analy- 
sis of the motions of these two planets 
over an extended period of time (5) 
has shown that the closest approaches 
of the two planets librate about the 
aphelion of Pluto in an arc of some 
76?, with a libration half-period of 
10,000 years. The positions in orbit 
occupied by both Neptune and Pluto 
since discovery of Neptune are shown 
in Fig. 1; the point of closest approach 
of the two bodies occurred in 1896- 
at a distance of 18.9 A.U. Shown also 
are the nodes of the orbits of Neptune 
and Pluto on the ecliptic, as well as the 
position of Neptune in 1795 when it 
was observed but not recognized as a 
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are the nodes of the orbits of Neptune 
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position of Neptune in 1795 when it 
was observed but not recognized as a 
planet. These observations were later 
recovered and reduced by Lalande. 
The observations from the discovery of 
Neptune in 1846 to the present encom- 
pass more than 70 percent of the orbit 
of Neptune. Although the observations 
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