
11 October 1968, Volume 162, Number 3850 

Dartmouth Time-Shari 

Development of the system by a tean 

faculty and undergraduates is descril 

John G. Kemeny and Thomas E. K 

The rapid growth of computers and 
their uses has been the most important 
scientific development of the last two 
decades. It is now commonly accepted 
that computers can carry out calcula- 
tions millions of times faster than 
human beings. It is also becoming evi- 
dent that this large quantitative increase 
actually brings about a qualitative 
change in the ways we deal with in- 
formation and with calculational prob- 
lems. Not so well understood is the 

complex programming effort needed to 
convert a given collection of transistors, 
magnetic cores, and wires into a "ma- 
chine" that is capable of providing 
services conveniently to its clients. In 

short, the role of "software" in the 
total computer system is not well 
understood. 

The purpose of this article is to de- 
scribe the development of one particular 
software system, the original Dartmouth 

time-sharing system. 
Most readers will be familiar with the 

notion of time-sharing, the ability to 

provide simultaneous service to many 
users equipped with typewriter-like ter- 
minal devices. These users may be typ- 
ing in new programs, calling programs 
from a "library" (the collection of pro- 
grams available to all), presenting re- 

quests for processing, or watching re- 
sults being typed. Many other forms of 
service are available whether the user 

Dr. Kemeny is professor of mathematics and 
Dr. Kurtz is director of the Kiewit Computation 
Center, Dartmouth College, Hanover, New Hamp- 
shire. 

11 OCTOBER 1968 

is in the computation 
office, or 3000 miles 
these services are, pro 
must be made in the so 

The concept of time- 
realized around 1960 c 
puter, the Digital Equi 
tion PDP-1, and was d 
by personnel from M 
Bolt Beranek and New 

intervening years, howe 
ment and replication 
and their descendants 
slower than hoped, pr 
their complexity had be 
estimated. 

These delays perm 
ments over the merit 

sharing concepts to p 
years before compari 
actual demonstrations c 
Nonetheless, when th 
tions did occur, time-st 
be much more successf 

proponents had hopec 
important applications 
areas. 

The several dozen t 
tems that exist or are 
today range from sigr 
instruments to systems 
fulness. Relatively few 
achieved a level of tec 
nomic success measurec 
of replicated versions < 
normal operation. Th 

replicated of the succes 
the Dartmouth time- 

SCIENCEE 

(DTSS). Designed and constructed by 
a team consisting of the authors and a 
dozen undergraduate students at Dart- 
mouth College during the period 1963- 
65, it became the backbone of several 
commercial time-sharing services as 

ng well as making its appearance into nu- 
merous industrial and engineering orga- 
nizations. Today over 50 copies are in 

i of operation. At Dartmouth College, it 
operated for 16 hours a day, 7 days a 

bed. week, and was shown to be able to 
handle between 30 and 40 simultaneous 
users. 

~urtz ~ In complexity, DTSS may be de- 
scribed as a general-purpose system 
with a limited scope; that is, it offered 
a number of different types of user 

center, in his services, while, at the same time, plac- 
away. Whatever ing relatively severe limitations on the 
vision for them size of the computing job that could 
ftware system. be handled. However, the experiment 
sharing was first verified the prediction that most com- 
>n a small com- puting jobs, especially in an educa- 

ipment Corpora- tional environment, are indeed small. 

leveloped jointly It also provided the type of program 
[.I.T. and from creation and editing services that are 
man Inc. In the most often needed and used by most 
ver, the develop- ordinary users running ordinary com- 
of such systems puter jobs. The DTSS proved success- 
has been much ful enough to enable 80 percent of all 

rimarily because Dartmouth students, and a significant 
-en vastly under- fraction of the faculty, to learn to pro- 

gram a computer. 
itted the argu- 
ts of the time- 
ersist for many Computing a Part of Liberal Arts 
sons based on 
:ould take place. The primary goal motivating our 
iese demonstra- development of DTSS was the convic- 

laring proved to tion that knowledge about computers 
ful than even its and computing must become an essen- 
I and achieved tial part of liberal education. Science and 
in unanticipated engineering students obviously need to 

know about computing in order to carry 
ime-sharing sys- on their work. But we felt exposure to 
claimed to exist computing and its practice, its powers 
nificant research and limitations must also be extended 

of limited use- to nonscience students, many of whom 
,however, have will later be in decision-making roles in 
:hnical and eco- business, industry, and government. 
d by the number The administration and the Board of 
of the system in Trustees of Dartmouth gave us their 
le most widely full support as they, too, realized and 
,sful systems was accepted the goal of "universal" com- 

-sharing system puter training for liberal arts students. 

223 



We realized that traditional methods 
of handling computer programming at 
the college level would not work on a 
broad scale. First of all, and most im- 
portantly, the majority of liberal arts 
students would simply not elect a full 
course in computer programming. Sec- 
ond, those who did, or those who 
elected to learn on their own, would 
probably encounter two different kinds 
of obstacles that would tend to obscure 
and delay the understanding of the 
nature of computing and its applica- 
tions. 

The first obstacle was that only 
the most hardy student could persevere 
through the actual experience of run- 
ning programs on the typical batch- 
processing system then in vogue. The 
debugging (error-correcting) process 
usually requires a large number of tries 
before the problem is successfully 
solved. If it takes on the order of 1 
day for one try, the student will either 
lose interest or forget what the problem 
was. At best, he will waste time stand- 
ing around waiting for the day's results 
to appear. (Some educational institu- 
tions had developed outstanding batch- 
processing systems that provided rea- 
sonably good computer service for 
student use, but it is our opinion that 
even the most successful of these falls 
far short of a time-sharing system such 
as DTSS in terms of convenience and 
pedagogical advantage.) 

The second obstacle for our typical 
liberal arts student was the unnecessary 
complexity presented by the computer 
languages he had to use. Both Fortran 
and Algol, the two most popular lan- 
guages at that time, contained serious 
pedagogical disadvantages. Fortran con- 
tains a number of grammatical rules, 
the need for which is not intuitively 
obvious to the student. As a result, cer- 
tain common situations require puz- 
zling constructions. While Algol was 
admittedly more elegant than Fortran, 
this very elegance posed its own peda- 
gogical problems. Similar concerns 
would have applied to most of the other 
languages then in use. It should be 
noted that so-called "machine lan- 
guages" or "assembly languages" pre- 
sent far greater pedagogical problems 
and are completely unsuitable for 
liberal arts use. 

Therefore in planning an approach 
suitable for a moderate-size liberal arts 
college, such as Dartmouth, we decided 
that two radical changes were needed 
in the way computing was available. 
First, the student had to be able to 
debug his program and get it running 

224 

in a relatively short period of time, 
with very little inconvenience to him- 
self. Second, the programming language 
taught should be so simple that its de- 
tails would not be an obstacle to even 
the most nonscientific student. Institut- 
ing these changes would allow the 
teaching effort to be concentrated on 
the application of computing to other 
subjects, such as mathematics, rather 
than on the acquisition of skill in the 
use of some obscure and complex lan- 
guage or with the detailed requirements 
of the computer system. 

The first needed change led to the 
decision to design and construct a time- 
sharing computer service for student 
use. The second needed change led to 
the decision to design a new, simple, yet 
flexible, language. This new language 
was called Basic. 

We attribute the quite unexpected 
degree of success of DTSS in part to 
the ease of use and efficiency of the 
time-sharing system, and in part to the 
simplicity of the language Basic. We 
have been most pleased to note how 
widely our philosophy of time-sharing 
has been accepted, and how rapidly 
Basic is being adopted by many com- 
putation centers of varying types. 

Historical Chronology 

Dartmouth's experience in computing 
had begun in 1959 with a very small 
LGP-30. This experience revealed that 
bright undergraduate college students 
were extremely adept at computer pro- 
gramming, and that with little training 
they could produce major programs 
and software systems better than those 
professionally produced and commer- 
cially available. 

During the year 1962 plans began to 
be formulated as to what type of com- 
puter system would be constructed. At 
the same time, the National Science 
Foundation was approached for support 
of the project to construct a time-sharing 
system and to develop its use in teach- 
ing large numbers of students. Without 
the generosity of NSF the project could 
not have succeeded. 

At one point during the summer of 
1962 a visit was made to a computer- 
manufacturing plant by one of the 
authors and a bright undergraduate stu- 
dent programmer. After spending less 
than 1 day obtaining a few facts about 
the hardware components, this student 
produced, within a week, a rough pro- 
totype design for a way that a time- 
sharing system could be made to operate 

with available components. Although 
this design was never implemented, it 
did convince us that a time-sharing sys- 
tem, built around a small, medium-speed 
computer and requiring no specially 
constructed hardware, was feasible. (We 
note in passing that this undergraduate 
is today a member of the faculty of an 
Ivy League university.) 

During the year 1963 plans were de- 
veloped further, and the computer hard- 
ware was selected. The hardware was 
manufactured by the General Electric 
Company, and consisted of a GE-235 
computer system, a Datanet-30 com- 
munications computer, and a disk file 
that could be used by either computer. 
In the fall of 1963 our student pro- 
grammers (together with the two of us) 
began learning how to program the new 
computer. We alternated between high- 
level system design and elementary ex- 
ercises in code writing. In January of 
1964 we received notification from 
NSF of their approval of our two- 
pronged project. We were officially on 
our way! 

For a hectic month or two emergency 
alterations were made in the basement 
of an old college building-the only 
available site for the computer. The 
alterations included the installation of 
new electrical power lines and an air- 
conditioning system that later proved 
to be less than adequate for the job. 
The total floor space available at that 
time was about 1700 square feet, in- 
cluding staff offices. 

The computer equipment itself ar- 
rived on schedule during the final week 
of February 1964, and was rendered 
electrically operational around mid- 
March. At this point, the student pro- 
grammers occupied themselves for the 
better part of the day and night deter- 
mining how the computer really oper- 
ated under actual conditions (which 
was never exactly as described in the 
manuals), preparing programs, testing 
their theories of design for a computer 
system involving two processing units, 
and attempting to debug the programs 
they had prepared. Most of the dozen or 
so students were undergraduate mathe- 
matics majors. Some were sophomores 
who had not yet selected a major sub- 

ject; these younger students in many 
cases did some of the best work. 

During the month of April 1964 
some of the students worked 50-hour 
weeks in addition to carrying the nor- 
mal course load. Needless to say, some 
of their grades suffered as a result. 
However, the student programmers have 
never been permitted to disregard their 

SCIENCE, VOL. 162 



studies completely and in no case has a 
student programmer "flunked out" be- 
cause of time spent on the computer 
project. 

At the same time, the two of us 
worked on the design of the language 
Basic. It had to be simple enough to 
allow the complete novice to program 
and run problems after only several 
hours of lessons. It had to respond as 

expected to most common formulas and 
constructions. It had to provide simple 
yet complete error messages to allow 
the nonexpert to correct his program 
quickly without consulting a manual. It 
also had to permit extensions to carry 
on the most sophisticated tasks required 
by experts, but these extensions could 
not impinge upon novice use; higher 
levels of power could not be bought at 
the cost of greater complexity for the 

beginner. Our solution was a statement- 
oriented language in which the more 
elementary statements (nine in number) 
were easily within the reach of the most 
unscientific layman. Other statements 
provided additional capabilities. All the 
statements are describable with an ab- 
solute minimum of explanation about 
function, limitations, and special cases. 

One of us decided to write the first 

compiler for Basic himself. (A compiler 
is the piece of software that allows the 

computer to speak another language- 
Basic in this case.) He begged small 
amounts of computer time at nearby 
installations to make sure that, by the 
time DTSS was operational, we would 
have available a language that could 
work well within a time-sharing frame- 
work and take full advantage of the 
conversations possible under time-shar- 

ing. 

Some Design Considerations 

To understand some of the problems 
of developing a complete software sys- 
tem, a diagram of the hardware com- 

ponents and their relationship to each 
other will be useful (Fig. 1). 

While this two-computer configura- 
tion is only one of several ways in 
which a time-sharing system can be or- 

ganized, its use proved extremely for- 
tunate to us from several points of view. 

First, all computing for users takes 

place in the slave computer, while the 
executive program (the "brains" of the 

system) resides in the master computer. 
It is thus impossible for an erroneous or 

runaway user program in the slave com- 

puter to "damage" the executive pro- 
gram and thereby bring the whole 

system to a halt. Second, the executive 

program, by periodic sensing, can as- 
certain if all is well in the slave com- 

puter, and can initiate corrective action 
if it is not. Third, having two computers 
simplified the organization and design 
of the system-the executive program 
was fairly small and was quickly 
brought to a state where it could be 
"locked-in" and ignored. On new com- 

puter hardware these needs are met 
within the context of a single computer, 
but these new capabilities were not 
available to us-perhaps fortunately so. 

One problem that the two-computer 
approach did pose was communication 
between two machines. The master 

computer was equipped with a clock 
and could "interrupt" the slave com- 

puter. The master computer could also 
enter control commands into the mem- 

ory of the slave computer and could 
read the responses to these commands. 

This master-slave design was a rela- 

tively new concept in computer organi- 
zation, but our students were able to 
devise special techniques for handling 
the communication and control prob- 
lems in a simple way. 

The slave computer was programmed 
so that certain of its memory cells were, 
by agreement, used as "mailboxes" for 

transferring information to and from 
the master computer. Upon receiving an 

interrupt from the master computer, 
the slave computer would first save the 
crucial facts about its current work, 
and then scan the mailboxes for new 
instructions. It would then enter a code 
into one of the mailboxes to indicate 

receipt. If no tasks were called for, the 
slave computer would return to its cur- 
rent work. If assigned a task to carry 
out, it would do so, place a "task-com- 

pleted" code in a mailbox, and return 
either to its current work or to an 
"idle" loop awaiting the next interrupt. 
The design of this mailbox-like com- 
munication mechanism was carried out 

by two students working together vo- 

ciferously as each accused the other of 

being the cause of flaws in the design 
or its execution. When completed, it 
worked successfully without further 
need for modification. (Today both 
students are highly regarded computer 
professionals.) 

The effect of the two-computer sys- 
tem is quite dramatic. Most of a given 
user's time is spent in typing, looking 
at answers being typed out, and think- 

ing of what to do next. During these 

periods, which take minutes, he is talk- 

ing only to the master computer, which 
is relatively inexpensive and can carry 
on conversations with all users at the 

About 60 
teletypewriters 

40 lines 

Control Path 

I ru - U 35 on campus 
punch 10 in schools and college 

15 miscellaneous 
Fig. 1. Diagram of the hardware and communications for the first Dartmouth time-sharing system. 

readr 

reader 

11 OCTOBER 1968 225 

I ^, 1A I I -A 1 



same time. The more powerful slave 
computer works on only one problem 
at a time, for a few seconds, providing 
computer services in the narrower 
sense of the word. It is the high ratio 
of typing time to computing time that 
makes time-sharing both possible and 
practical. The system is efficient from 
the user's point of view if he can get 
small amounts of computing time fre- 
quently and as soon as he needs them. 
Only a small minority of users ever 
need long periods of computing, and 
these periods are handled while the 
slave computer has nothing more ur- 
gent to do. From a theoretical point of 
view, this system anticipated the cur- 
rent understanding that communication, 
not calculation, is the primary activity 
in a time-sharing system. 

System Begins Operating 

Barely a month and a half after the 
equipment became available for use by 
Dartmouth College, perhaps the most 
significant event in this whole history 
took place. On 1 May 1964, at 4 a.m., 
the Dartmouth time-sharing system was 
born as it successfully executed its first 
problem, one that had been supplied to 
it from a teletype, in Basic, with the 
answers being returned to the same 
teletypewriter. 

During the subsequent month the 
system was "shaken down" by students 
in a numerical analysis course. These 
students took turns attempting to run 
programs on the three teletypewriters 
that were available. One measure of the 
quality of time-sharing systems in a 
state of development is the average 
period of operation between failures. 
During those early weeks the mean time 
to failure was 5 minutes, and these 
hardy numerical-analysis guinea pigs 
performed a service above and beyond 
the call of duty. 

The quality of the system rapidly 
improved, and by mid-June of 1964 it 
was operating well enough to warrant 
increasing from 3 to 11 the number of 
teletypewriters, and to offer an indoctri- 
nation program for faculty members at 
Dartmouth College. Of approximately 
500 faculty and staff members, nearly 
200 attended three lectures by one of us 
on the use of the time-sharing system. 
Many of them followed the suggestion 
to practice on the teletypewriters, 
which were conveniently available since 
the undergraduate student body was on 
vacation. An extremely important effect 

226 

Table 1. Use of the Dartmouth system (ap_ 
proximate). 

Number of 
Size of different users 

User group group goup May Year 
1968 1.967-1968 

Dartmouth 
Undergrad 3000 1000 2000 
Graduate 600 250 450 
Faculty 400 100 150 

Other col- 
leges (4) 550 950 

Secondary 
schools (23) 2200 4600 

Total 4100 8150 

of the training exercise was that most 
of the faculty and administration at 
Dartmouth College quickly became 
aware of the value and uses of the 
time-sharing system. Their enthusiasm 
and unqualified support has been an 
invaluable asset. 

By the fall of 1964 we were ready to 
start the freshman training program. 
Since 80 percent of all Dartmouth stu- 
dents complete a year of college mathe- 
matics (though there is no mathematics 
requirement), the second semester of 
freshman mathematics was an ideal 
course for the introduction of computer 
programming. In the science sequence 
this course introduces several major 
techniques of the calculus, while in the 
nonscience sequence the course covers 
finite mathematics; both are well suited 
for computer applications. 

The academic year at Dartmouth is 
divided into three terms, and each stu- 
dent takes only three courses during a 
10-week term. This calendar allows a 
great deal of freedom for experimenta- 
tion-it is very useful to have one-third 
of the student's attention for a 10-week 
period. We designed a series of three 
lectures to introduce the student to pro- 
gramming in Basic, to be delivered 
during the first week of the term. We 
then reserved a teletype for each student 
for /2 hour a week for the remaining 
9 weeks. He was required to program 
and debug four problems on his own. 
These problems were coordinated with 
the subject matter of the course and 
ranged from a trivial exercise to a quite 
substantial program. 

After the evaluation of the first 
course we made two changes. We in- 
creased the reserved teletype time to ?3 
hour a week-we had underestimated 
how badly our students type. On the 
other hand, the lectures were reduced 
to two. We have found that two 1-hour 
lectures are entirely adequate to intro- 
duce the novice to Basic. By the end 

of the second hour he is raring to write 
his first program. 

We next had to face the problem, of 
who would check the thousands of 
Basic programs written by our fresh- 
men annually. Clearly, only the conm- 
puter could do an adequate job. Fol- 
lowing our usual philosophy, we did 
not try to devise a general program- 
checker but settled for the simplest so- 
lution that would be adequate for our 
purposes. We added to Basic a small 
software package that allows a test- 
program to take control from the stu- 
dent program. When the freshman 
thinks that he has debugged his prob- 
lem, he types "TEST," and receives 
either an official approval or hints as 
to how his program is failing. These 
test programs are also written in Basic, 
and once such a routine exists for a 
given exercise, it may be used for years. 
The system has the very great advantage 
that only the student knows how many 
stupid mistakes he made before his pro- 
gram was accepted. 

We have now trained four freshman 
classes, so that by June 1968 over 80 
percent of all our students knew how 
to write a computer program. The typi- 
cal training session results in about 95 
percent completion of all assigned prob- 
lems, a figure so high that it testifies 
more to the universal enthusiasm of 
the students than to the excellence of 
the instruction. We have found it very 
interesting to note how little help the 
students demand. Although a graduate 
student is available throughout the year 
to answer computer questions, he is 
not at all busy. A freshman has no 
trouble finding another freshman to an- 
swer his computer questions. 

Use In and Out of the Curriculum 

The effect of almost universal knowl- 
edge in the use of computers and uni- 
versal availability of the computer has 
been overwhelming. While precise sta- 
tistics are difficult to obtain, the approx- 
imate data shown in Table 1 suggest a 
very high degree of infusion of com- 
puting into the life of the college, its 
associated professional schools, and col- 
leges and secondary schools in the re- 
gion. The undergraduate figure is es- 
pecially notable since only about 25 
percent of the undergraduates are actual 
or potential science majors. 

Much of the use by students is inci- 
dental to actual course work, or repre- 
sents homework-type calculations un- 

SCIENCE, VOL. 162 



dertaken on the initiative of the students 
themselves. Nonetheless, a recently con- 
ducted survey shows that almost half 
of the 40 or so academic departments 
report "official" computer use in one or 
more courses; these 80 or so courses are 
listed below by title. 

Business School 
Managerial Economics 
Environmental Economics 
Accounting and Finance 
Auditing 

Medical School 
Pharmacology (several courses) 
Physiology 
Medical Physiology 

Engineering School 
Introduction to Engineering 
Statics and Dynamics 
Solid Mechanics 
Active and Nonlinear Circuits 
Thermodynamics 
Computational Methods in Engineering 
Electricity and Magnetism 
Thesis, Honors Seminar 
Transportation Planning 
Combined Digital and Analog Controls 
Finite State Machines 
Heat, Mass and Momentum 
Nuclear Reactor Theory 
Engineering Economy 
Optimization Theory 
Decision Theory in Design 
Wave Propagation 
Tutorial 

Astronomy 
Evolution of the Universe 

Biology 
Life Science 
Genetics 
Aquatic Ecology 

Chemistry 
General Chemistry 
Physical Chemistry 

Earth Sciences 
Geomorphology 
Hydrology 
Geophysics 
Research 

Mathematics 
Techniques of Calculus 
Finite Mathematics 
Computer Outside the Sciences 
Statistics 
Advanced Calculus 
Logic 
Linear Algebra 
Probability Theory 
Mathematical Statistics 
Number Theory 
Theory of Computing 
Numerical Analysis 

Physics 
General Physics 
Classical Physics 
Contemporary Physics 
Electricity and Magnetism 
Advanced Laboratory 

Economics 
Statistics 
Risk and the Corporation 
Econometrics 
Readings and Thesis 
Money and Banking 

Geography 
Introduction 
Physical Geography 
Advanced Study 
Thesis 

11 OCTOBER 1968 

Psychology 
Complex Organizations 
Human Relations 
Statistics 
Laboratory-Behavior 
Mathematical Psychology 
Research 

Sociology 
Human Society 
Comparative Social Institutions 
Methods 
Simulations of Social Processes 
Futurism 

Classics 
Latin 1 Elementary 
Latin 3 Vergil 
Latin 80 Cato 
Greek and Roman Studies 5 (Greek 

Mathematics) 

Language 
Spanish 1, 2, and 3 

Literature 
Senior Thesis 

What Was Different about DTSS 

We would now like to consider, in 
retrospect, what we did at Dartmouth 
that was different. First of all, our 
time-sharing system was designed for 
the novice. We were not worried that 
the expert would be able to make good 
use of the resulting system, as indeed 
he was. We went to great lengths to 
make the conversations with the com- 
puter simple and natural, but we never 
went to the point where the services 
were so time-consuming that the system 
could serve only a small elite group. 

Perhaps a concrete example will ex- 
plain how such fine distinctions were 
made. The overwhelming advantage of 
time-sharing is in debugging, the process 
most time-consuming for the human 
being-though not for the computer. 
The ability to receive diagnostics im- 
mediately and to obtain the results of 
test runs within seconds enables one to 
debug a fairly complex program in one 
teletype session. But just what should 
"immediately" mean? We have found 
that any response time which averages 
more than 10 seconds destroys the il- 
lusion of having one's own computer, 
and we have always kept the number 
of users to the point where responses 
of more than 10 seconds were rare. 

However, many computer experts 
conjectured that users would want to 
have error diagnostics immediately 
after each line is typed in. Such an 
approach is naturally costly in terms of 
computer resources and reduces signifi- 
cantly the number of users the system 
can handle. We refused to adopt this 
extreme form of "controversial mode." 
Our users get diagnostics only when 
their entire program is compiled (trans- 

lated from Basic into the language of 
the computer). We have found that this 
compromise is not only acceptable, but 
preferable. We find the instantaneous 
error messages of other systems annoy- 
ing and a waste of time. It is very much 
like having an English teacher looking 
over your shoulder as you are writing a 
rough draft of a composition. You 
would like a chance to clean up the 
draft before it is criticized. 

Perhaps our most radical departure 
from tradition was not to save the 
compiled version of a program but only 
its Basic version. We were seriously 
criticized for the "unnecessary over- 
head" in having to recompile every time 
the program is used. We claim that this 
piece of unorthodoxy is one of the real 
secrets of our success. It means that as 
far as the user is concerned the machine 
talks Basic. He may be aware of some 
other language in the background, but 
machine-language is as irrelevant to the 
average user as the peculiarities of the 
hardware. And, ironically, we have gone 
a long way toward turning this "ineffi- 
ciency" into a source of savings. 

Basic was designed not only to make 
it easy to use but to make its compila- 
tion significantly faster than that of 
other languages. With modern software 
technology, our original Basic compiler 
has been turned into a highly efficient 
instrument by our student program- 
mers. Even on the medium-speed slave 
computer of DTSS only a small fraction 
of programs required more than a sec- 
ond to compile. (On our much faster 
system today compilation times below 
1/10 of a second are common.) One 
must add that a typical user hardly ever 
runs the same program twice. He will 
make a small change, or a correction, 
or change his data. Once any change is 
made, it is much more efficient to re- 
compile than to try to patch a program 
in machine language. We also gain a 
great deal in storage capacity by saving 
only the compact Basic program rather 
than the fully expanded version in ma- 
chine language. Nor does the user save 
several slightly different versions of his 
program; it is too easy to make small 
changes to his Basic program as needed. 

Of course, over the years the number 
of services under DTSS has vastly in- 
creased. We have added a variety of 
editorial services. We have added Algol 
(for the purist) and Fortran (for the 
old-fashioned). Our library contains 
some 500 programs, including many 
games. We have found that a computer 
is an efficient and inexpensive source of 

227 



entertainment. We have lost many a 
distinguished visitor for several hours 
while he quarterbacked the Dartmouth 
football team in a highly realistic simu- 
lated game. And Basic itself has grown 
and matured. While we can still intro- 
duce the novice to Basic in 2 hours, 
today we also develop major new sys- 
tems and large computer-assisted- 
instruction applications entirely in 
Basic. 

Summary 

We have learned that success can 
result in an entirely new set of prob- 
lems. Our original DTSS, which seemed 

entertainment. We have lost many a 
distinguished visitor for several hours 
while he quarterbacked the Dartmouth 
football team in a highly realistic simu- 
lated game. And Basic itself has grown 
and matured. While we can still intro- 
duce the novice to Basic in 2 hours, 
today we also develop major new sys- 
tems and large computer-assisted- 
instruction applications entirely in 
Basic. 

Summary 

We have learned that success can 
result in an entirely new set of prob- 
lems. Our original DTSS, which seemed 

much too large for a small campus with 
very few computer users, soon proved 
unable to handle the demands of the 
same small campus where everyone 
seemed to be clamoring for computer 
services. By 1966 we were planning the 
second DTSS. With the cooperation of 
General Electric, we opened in the fall 
of 1967 a time-sharing system, based 
on GE-635 hardware, which can handle 
over 100 users. The NSF has helped us 
provide computer services to 23 sec- 
ondary schools and 10 colleges, as well 
as expanding the local capabilities. This 
fall we will launch phase II, a 
fully general-purpose, large-scale, time- 
sharing system for the GE-635. Like 
the first DTSS, phase II is again being 

much too large for a small campus with 
very few computer users, soon proved 
unable to handle the demands of the 
same small campus where everyone 
seemed to be clamoring for computer 
services. By 1966 we were planning the 
second DTSS. With the cooperation of 
General Electric, we opened in the fall 
of 1967 a time-sharing system, based 
on GE-635 hardware, which can handle 
over 100 users. The NSF has helped us 
provide computer services to 23 sec- 
ondary schools and 10 colleges, as well 
as expanding the local capabilities. This 
fall we will launch phase II, a 
fully general-purpose, large-scale, time- 
sharing system for the GE-635. Like 
the first DTSS, phase II is again being 

written by a faculty-student coalition. at 
Dartmouth. It will serve everyone, from 
the novice to the research worker who 
needs large production runs. We hope 
that with our much more powerful 
hardware we will be able to provide 
these extended services to some 150 
isers simultaneously without compro- 
mising our basic philosophy of making 
the system as easy to use for the inex- 
perienced as for our original DTSS. 

The real test comes this fall. We are 
confident that the expert faculty user 
will be very happy. But will our stu- 
dents after a football game still take 
their dates to the Kiewit Computation 
Center to show off their prowess with 
computers? 

written by a faculty-student coalition. at 
Dartmouth. It will serve everyone, from 
the novice to the research worker who 
needs large production runs. We hope 
that with our much more powerful 
hardware we will be able to provide 
these extended services to some 150 
isers simultaneously without compro- 
mising our basic philosophy of making 
the system as easy to use for the inex- 
perienced as for our original DTSS. 

The real test comes this fall. We are 
confident that the expert faculty user 
will be very happy. But will our stu- 
dents after a football game still take 
their dates to the Kiewit Computation 
Center to show off their prowess with 
computers? 

University Integrity 

Kenneth S. Pitzer 

University Integrity 

Kenneth S. Pitzer 

At the moment, there seems to be 
special need to discuss the internal logic 
of the university-the relations between 
its students, faculty, governing board, 
and administrative officers, and espe- 
cially the factors which are essential to 
the university's integrity as an institu- 
tion. The trials of Columbia University 
have been all too prominent in recent 
weeks. But many other American uni- 
versities have suffered. And, as we look 
around the world, we note the troubles 
of one of the oldest and most prom- 
inent universities, the University of 
Paris. While the pressures leading to- 
ward disruption are not the same every- 
where, it is true that some universities 
have been able to contend with these fac- 
tors much better than others have. The 
problems here in Houston seem not to 
have been as severe as those in some 
other locations, but anyone who is 
sensitive to the thinking of various in- 
dividuals can detect the presence of 
the same ideas, objectives, and frus- 
trations. 

In commenting on these problems I 
want to distinguish carefully between 
those cases where the institution suf- 

228 

At the moment, there seems to be 
special need to discuss the internal logic 
of the university-the relations between 
its students, faculty, governing board, 
and administrative officers, and espe- 
cially the factors which are essential to 
the university's integrity as an institu- 
tion. The trials of Columbia University 
have been all too prominent in recent 
weeks. But many other American uni- 
versities have suffered. And, as we look 
around the world, we note the troubles 
of one of the oldest and most prom- 
inent universities, the University of 
Paris. While the pressures leading to- 
ward disruption are not the same every- 
where, it is true that some universities 
have been able to contend with these fac- 
tors much better than others have. The 
problems here in Houston seem not to 
have been as severe as those in some 
other locations, but anyone who is 
sensitive to the thinking of various in- 
dividuals can detect the presence of 
the same ideas, objectives, and frus- 
trations. 

In commenting on these problems I 
want to distinguish carefully between 
those cases where the institution suf- 

228 

fered a real breakdown-where the 
educational activities were substantial- 
ly disrupted-and those in which an 
expression of student opinion got slight- 
ly out of hand. So long as students re- 
spect the rights and privileges of others 
who may hold differing views or who 
may merely be uninterested in a partic- 
ular topic, they certainly have the right 
to express their views on the public 
issues of the day. In some cases over- 
enthusiastic picketing has been con- 
ducted in a manner that has somewhat 
infringed upon the rights of others, but 
the institution has been able to handle 
the situation with an appropriate firm- 
ness and compassion and then has been 
able to continue with no loss of integ- 
rity. 

The Pressures 

What are the pressures that are espe- 
cially great today? What do the acti- 
vists want? Some of you undoubtedly 
know better than I, but I hope you will 
accept the following brief summary. 
There is deep student concern over 

fered a real breakdown-where the 
educational activities were substantial- 
ly disrupted-and those in which an 
expression of student opinion got slight- 
ly out of hand. So long as students re- 
spect the rights and privileges of others 
who may hold differing views or who 
may merely be uninterested in a partic- 
ular topic, they certainly have the right 
to express their views on the public 
issues of the day. In some cases over- 
enthusiastic picketing has been con- 
ducted in a manner that has somewhat 
infringed upon the rights of others, but 
the institution has been able to handle 
the situation with an appropriate firm- 
ness and compassion and then has been 
able to continue with no loss of integ- 
rity. 

The Pressures 

What are the pressures that are espe- 
cially great today? What do the acti- 
vists want? Some of you undoubtedly 
know better than I, but I hope you will 
accept the following brief summary. 
There is deep student concern over 

certain issues confronting our society, 
especially race relations and the war in 
Vietnam. This concern is combined 
with knowledge on the part of certain 
older students who have seen the tech- 
nique of civil rights demonstrations 
yield the fruit of favorable congression- 
al action. Recently the population in 
general and the governmental leader- 
ship have found these techniques less 
convincing. As a result there is, in 
these active student groups, a sense of 
frustration. Many students have shifted 
their activities to the political sphere 
by supporting their favorite candidate 
for the Presidency; this is most com- 
mendable. But a small hard core of 
extremists-those with the greatest ar- 
rogance and the least faith in their 
country-have escalated their demon- 
strations from the legal range to the 
level of kidnap and blackmail. Un- 
fortunately, in a few cases substantial 
numbers of other students and faculty 
have supported these extremists or have 
opposed the use of feasible methods 
of dealing with them. 

Joseph Shoben of the American 
Council on Education puts it in these 
terms (1): 

(1) Like a great many other citizens 
of our republic, students in large numbers 
are sufficiently frustrated and distraught 
by the nature and entailments of the war 
and by the unhappy state of our race re- 
lations to act on their discontent. (2) Be- 
cause they are primarily in contact with 
colleges and universities as institutional 

certain issues confronting our society, 
especially race relations and the war in 
Vietnam. This concern is combined 
with knowledge on the part of certain 
older students who have seen the tech- 
nique of civil rights demonstrations 
yield the fruit of favorable congression- 
al action. Recently the population in 
general and the governmental leader- 
ship have found these techniques less 
convincing. As a result there is, in 
these active student groups, a sense of 
frustration. Many students have shifted 
their activities to the political sphere 
by supporting their favorite candidate 
for the Presidency; this is most com- 
mendable. But a small hard core of 
extremists-those with the greatest ar- 
rogance and the least faith in their 
country-have escalated their demon- 
strations from the legal range to the 
level of kidnap and blackmail. Un- 
fortunately, in a few cases substantial 
numbers of other students and faculty 
have supported these extremists or have 
opposed the use of feasible methods 
of dealing with them. 

Joseph Shoben of the American 
Council on Education puts it in these 
terms (1): 

(1) Like a great many other citizens 
of our republic, students in large numbers 
are sufficiently frustrated and distraught 
by the nature and entailments of the war 
and by the unhappy state of our race re- 
lations to act on their discontent. (2) Be- 
cause they are primarily in contact with 
colleges and universities as institutional 

The author is president of Rice University, 
Houston, Texas, and president-elect of Stanford 
University, Stanford, California. This article is 
adapted from a commencement address delivered 
17 May 1968 at the University of St. Thomas, 
Houston. 

The author is president of Rice University, 
Houston, Texas, and president-elect of Stanford 
University, Stanford, California. This article is 
adapted from a commencement address delivered 
17 May 1968 at the University of St. Thomas, 
Houston. 

SCIENCE, VOL. 162 SCIENCE, VOL. 162 


