
basal glide planes of practically all 
crystals have become orientated within 
15 deg of the horizontal plane of the 
ice sheet; that is, principal crystallo- 
graphic axes are all orientated within 
15 deg of the vertical. This structure 
persisted to a depth of 1800 m. 

Crystals between 1200 and 1800 m 
were appreciably smaller than crystals 
observed directly above and below this 
zone (Fig. 3) which also contained 
numerous cloudy bands (as thick as 
2 cm) of very fine-grained ice that 
resembled shear layers. All fabric ele- 
ments observed in this zone, together 
with the widespread occurrence of 
"strain shadows" in crystals, are entirely 
consistent with some process of shear 
deformation in this part of the ice sheet. 
"Smearing out" of entrapped air bub- 
bles by such a process may possibly 
explain the decrease and ultimate dis- 
appearance of air bubbles at about 1200 
m. The very rapid increase in size of 
crystals below 1800 m (crystal cross 
sections of 30 cm2 or more are not un- 
common) is probably attributable to 
annealing at elevated temperatures near 
the bottom of the ice sheet; practically 
identical structure occurs in ice from 
near the bottom of the Ross Ice 
Shelf (14). 

Measurements of electrolytic conduc- 
tivity of melted samples indicate very 
low levels of dissolved solids at all 
depths; conductivities varied between 
1.7 and 3.1 t/mho/cm, the 45 samples 
of dirt-free ice tested averaging 2.1 
/umho/cm. No systematic changes in 
conductivity with depth (time) were de- 
tected. 
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Turbidity Maximum of the Northern Chesapeake Bay 
Abstract. The turbidity maximum near the head of the Chesapeake Bay is 

produced primarily by the local resuspension of bottom sediments, and by the 
estuarine "sediment trap" which is formed in the upper reaches of the estuarine 
circulation regime by the net nontidal circulation. 
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Abstract. The turbidity maximum near the head of the Chesapeake Bay is 

produced primarily by the local resuspension of bottom sediments, and by the 
estuarine "sediment trap" which is formed in the upper reaches of the estuarine 
circulation regime by the net nontidal circulation. 

Zones of turbidity maximums in the 
upper reaches of a number of coastal 
plain estuaries throughout the world 
have been reported. These zones begin 
in the estuary where a vertical gradient 
of the salinity first appears and ex- 
tend downstream for 20 to 40 km. They 
are characterized by tubidities and sus- 
pended sediment concentrations greater 
than those found either upstream in the 
source river or farther seaward in the 
estuary. Their formation has been at- 
tributed both to the flocculation (1) and 
to the deflocculation (2) of river-borne 
sediment, and to hydrodynamic proc- 
esses (3, 4). Although there have been 
numerous reports of turbidity maxi- 
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mums, the turbid zone extending from 
the head of the Chesapeake Bay at 
Turkey Point seaward for about 32 km 
(nearly to Tolchester) (Fig. 1) is the first 
of such features to be comprehensively 
studied. 

From 1 April 1966 through 31 March 
1967 samples were collected fortnightly 
from several depths at each of the sta- 
tions shown in Fig. 1 for determina- 
tions of the concentration of the total 
suspended solids, the concentration of 
combustible organic matter, the miner- 
alogy, and the size distribution of the 
suspended particles (5). Supplementary 
samples were also collected at stations 
farther seaward in the estuary, and at a 
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Fig. 1. Stations of the northern Chesapeake Bay. All areas deeper than 8 m are 
shown in black. 
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Flood Fig. 2 (left). Variations of current velocity 
125 (cm/sec) and suspended sediment concen- 
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layer of the turbid zone at stations 
deeper than about 4 m. In the lower 
layer and throughout the water column 
at shallower stations, resuspension and 
deposition produced large fluctuations 
(as much as 20-fold) of the suspended 
sediment concentration within a few 
hours or less. The average mean con- 
centration of suspended sediment in the 
upper layer (the spring freshet exclud- 
ed) over the entire zone of the turbidi- 
ty maximum, was 14 mg/liter with a 
mean deviation of less than 4 mg/liter. 

The spring period of high runoff 
then was one of fluvial domination of 
the upper bay's suspended sediment 
population and was characterized by a 
close link between the suspended sedi- 
ment population and the principal "ulti- 
mate" source of sediment-the Susque- 
hanna River. At all other times of the 
year, however, the concentrations of 
suspended sediment were higher within 
the upper bay than in the mouth of the 
Susquehanna, and this link was missing. 
A gradual purging out of the sediment- 
laden freshet water cannot explain the 
higher concentrations which persisted 
throughout the year since the renewal 
time is only of the order of a few 
weeks. The explanation for the higher 
concentrations lies in the continual re- 
suspension of bottom sediments, and in 
the "sediment trap" produced by the 
net nontidal estuarine circulation which 
entraps much of the sediment-both 
resuspended and newly introduced- 
within this segment of the bay. 

Throughout the year, sediment is re- 
suspended from the bottom both by 
tidal scour and by wind waves. Since 
the area is shallow (mean depth, 4.8 m) 
resuspension by wind waves is an im- 
portant factor during periods of rough 
seas. Resuspension by tidal scour is im- 
portant at all times of the year and 
accounts for most of the resuspended 
material. 

An example of the effectiveness of 
tidal currents as an agent of resuspen- 
sion is shown in Fig. 2. For 38 hours 
in July 1967 hourly measurements of 
current velocity and the concentration 
of suspended sediment were made at 
the surface, and at depths of 2, 4, 6, 8, 
and 9 m just to the west of station IIIC 
in 9.5 m of water (Fig. 1). In the 
upper 4 m, the fluctuations of the sedi- 
ment were relatively small. At 6 m, the 
concentration of suspended sediment 
ranged from 10 to 36 mg/liter, but the 
concentration of suspended sediment 
and the current velocity or the phase 
of the tide were not closely related. At 
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8 and 9 m, there were large fluctuations 
in the concentration of suspended sedi- 
ment, and there was obviously a strong 
relation to current velocity and the 

phase of the tide at which the samples 
were collected. Maximum concentra- 
tions occurred near maximum ebb and 
flood velocities, and minimum concen- 
trations shortly after slack water. At 
8 m, the concentration of suspended 
sediment ranged from 14 to 93 mg/ 
liter, and at 9 m, the range was from 
15 to 280 mg/liter-nearly a 19-fold 
range. 

There is a "natural background" of 
suspended sediment which increases with 
depth and whose intensity at any depth 
is relatively constant over time scales 
of at least two tidal cycles (Fig. 2) (8). 
The background which increases from 
about 15 mg/liter at the surface to 
about 20 mg/liter at a depth of 9 m 
consists of very fine-grained suspended 
particles whose settling times are long 
compared to the mixing time. The vol- 
ume-weighted mean velocity of settle- 
ment of the background particles is only 
about 10-3 cm sec-1, which corre- 
sponds to a Stokes' diameter of ap- 
proximately 3 /t (5). Particles of this 
diameter would settle a distance of less 
than 1 m in still water in more than 
two tidal periods. The spatial and 
temporal variability of the mean size 
of the background particles is small 
(5). This natural background is due 
in part directly to runoff, and in part 
to the internal sediment sources-re- 
suspension, primary production, and 
shore erosion. 

Below about 4 m, superimposed 
upon this natural background are semi- 
tidal fluctuations of the suspended sedi- 
ment concentration which increase in 
magnitude near the bottom-the sedi- 
ment source. These large fluctuations 
are produced by tidal "scour and fill." 
Large particles are resuspended with 
increasing ebb and flood velocities 
during each half-tidal period, and settle 
out when the current begins to wane. 
Settling times based on the data of 
Fig. 2 indicate Stokes' diameters of 
8 to 12 /t for these particles which 

agrees well with our measured sizes 
(5). In depths less than about 4 m, 
the semitidal fluctuations are present 
throughout the water column. 

Much of the sediment is trapped 
within this segment of the bay by the 
net nontidal estuarine circulation pat- 
tern (5). In estuarine circulation the 
less dense fresh river water flows down- 
stream (seaward) in the upper layer 

while the denser saltier seawater flows 
upstream in the lower layer (9). This 
circulation leads to the formation of 
an effective "sediment trap" (3) in the 
transition zone of the upper reaches of 
the estuary where the net nontidal up- 
stream flow of the lower layer dissipates 
until finally the net flow is downstream 
at all depths. Particles that settle out 
of the seaward-flowing upper layer into 
the lower layer are carried back up- 
stream by its net nontidal upstream 
flow; sediment then accumulates, and 
a so-called "turbidity maximum" forms 
near the head of the bay. Many of 
these particles are transported back 
into the upper layer by vertical mixing, 
and the whole process is repeated many 
times. Within the turbid zone of the 
bay, the tidal mixing is intense enough 
to overcome the vertical stratification 
and to produce a nearly homogeneous 
water column twice during each tidal 

cycle. At the seaward end of the 
turbidity maximum, however, vertical 
mixing is inhibited, and the water col- 
umn remains stratified over much 
longer time scales. 

In the turbid zone of the upper 
Chesapeake Bay there are thus both a 
"source" of suspended sediment in the 
continual resuspension of the fluvial 
sediment deposited during the spring 
freshet, and a mechanism for entrap- 
ping much of that sediment within this 

segment of the bay-a mechanism 
absent from other segments of the bay 
proper. 

J. R. SCHUBEL 
Chesapeake Bay Institute, 
Johns Hopkins University, 
Baltimore, Maryland 21218 
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