
Template-Directed Synthesis with 

Adenosine-5'-phosphorimidazolide 
Abstract. Adenosine-5'-monophosphorimidazolide reacts efficiently with adeno- 

sine derivatives on a polyuridylic acid template, with the formation of internucleo- 
tide bonds. 

1 -Ethyl - 3- (3 -dimethylaminopropyl) 
carbodiimide hydrochloride brings 
about formation of oligoadenylic acids 
from adenylic acid on a polyuridylic 
acid template (1, 2), or of oligoguanylic 
acids from guanylic acid on a polycyti- 
dylic acid template (3). These reactions 
are base-specific (2, 3). The efficiency 
of condensation is low; one internucleo- 
tide bond is formed for each 50 or so 
carbodiimide molecules hydrolyzed. 

We have attempted these same re- 
actions using "prebiotic" condensing 
agents (4), but without success. Cyana- 
mide and cyanoguanidine, among the 
most plausible prebiotic condensing 
agents, cannot easily be tested in the 
laboratory since they react so slowly at 
the low temperatures required for for- 
mation of stable helices. Cyanogen, 
which is sufficiently reactive at 0?C, 
does not bring about template-directed 
synthesis. 

An alternative approach is the use of 
preformed activated nucleotides. Adeno- 
sine triphosphate forms a stable helix 
with polyuridylic acid (5) but then 

undergoes hydrolysis without forming 
appreciable amounts of oligonucleo- 
tides. Adenosine- 5'-phosphorimidazo- 
lide, however, reacts with remarkable 
efficiency on a polyuridylic acid tem- 

plate to give internucleotide bonds. 

A solution (0.5 ml) containing 
adenosine-8-C14 (about 0.16 ucc/pmole, 
0.0125M), adenosine-5'-phosphorimida- 
zolide (0.0125M), polyuridylic acid 
(0.05M), imidazole (0.2M), NaCI 
(0.2M), and MgCl2 (0.075M) was pre- 
pared at 0?C, and portions were titrated 
to pH 6, 7, and 8 with 2M HC1. Sam- 
ples were analyzed from time to time 
by methods described previously (1). 
Yields of ApA and ApApA (6) are given 
in Table 1 together with those from 
control experiments in which the poly- 
uridylic acid was omitted. The ApA 
from an experiment carried out at pH 7 
was then degraded enzymically (1) to 
determine the proportions of the dif- 
ferent isomers. The major product was 
A2'pA (95.9 percent); A3'pA accounted 
for 1.8 percent and A5'pA for 2.3 per- 
cent of total dinucleoside phosphate. 

Solutions identical with those just 
described except that they contained 
0.0125M adenylic acid-8-C14 (about 
0.16 /c//Lmole) in place of adenosine 
were analyzed by a method described 
previously (1); product yields appear in 
Table 2 along with those for controls in 
which the polyuridylic acid was omitted. 
The results (Tables 1 and 2) show that 
adenosine 5'-phosphorimidazolide reacts 
on a polyuridylic acid template to form 
phosphodiester bonds, with efficiency as 

high as 50 percent. In our control ex- 
periments only very small amounts of 
phosphodiesters were formed, although 
the pyrophosphate A5'ppA was ob- 
tained in the self-condensation of pA. 

Imidazoles are readily formed from 
simple precursors under potentially pre- 
biotic conditions. Imidazole derivatives 
are obtained from sugars and ammonia 
(7); imidazoleglycerolphosphate, from 
ribose-5-phosphate and formamidine 
(8); histidine, from the hydrogen cya- 
nide polymer (9); and imidazole, from 
cyanoacetylene and ammonia under 
ultraviolet radiation (10). Furthermore, 
activated phosphates react with imidaz- 
oles in aqueous solution to give N- 
phosphorimidazole derivatives; thus the 
prebiotic occurrence of such derivatives 
is not implausible. 

Two phosphorylating enzymes, thio- 
succinate kinase (11) and a hexose 
kinase (12), are known to involve N- 
phosphohistidine intermediates. Nothing 
is known about the mechanisms of ac- 
tion of the nucleotide polymerases, but 
they could be similar. We believe that 
our results, together with others show- 
ing that aminoacylinidazoles give pep- 
tides in aqueous solution (13), suggest 
that imidazoles may provide a link be- 
tween prebiotic and biotic condensation 
reactions. However, there are several 
alternatives; for example, phosphorami- 
dates, which we are investigating. 
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Table 1. Percentage yields of ApA and ApApA formed on a polyuridylic acid template after 
3 and 14 days. 

pH Polyuri- 3 Days 14 Days 
dylic acid ApA ApApA ApA ApApA 

6 Without 0.7 1.2 
6 With 24.0 0.5 29.0 1.0 
7 Without 0.9 1.7 
7 With 27.7 .7 41.7 2.05 
8 Without 0.6 1.5 
8 With 26.3 .8 43.6 2.85 

Table 2. Percentage yields of pApA, AppA, and trinucleotides formed on a polyuridylic acid 
template after 14 days. 

Polyuri- 
pH Polyui AppA pApA Trimer dylic acid 

6 Without 10.5 0.4 
6 With 11.2 4.9 0.2 
7 Without 17.2 0.7 
7 With 8.4 19.8 2.45 
8 Without 16.4 1.1 
8 With 4.25 27.6 3.8 
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