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In nature, partitions of space into 
polyhedral cells by "close-packing" of 
bodies, such as aggregates of soap bub- 
bles (1), plant cell tissue (2), and 
metal crystallites (3) tend to conform 
to at least three rules: (i) the average 
number of faces on aggregated bodies 
approaches 14 faces per body; (ii) the 
average number of sides per face is 
5.143; and (iii) the vertices are gen- 
erally tetrahedral, formed by four cells 
whose juncture angles are close to 
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109028' (4). The latter restriction is 
a consequence of the minimization of 
surface energy, which causes each body 
to enclose the greatest volume with the 
least amount of surface area (5), given 
the special circumstances that deter- 
mine the form of each body. 

Thus far, the only polyhedron which 
satisfied these conditions and packed 
with other identical units to fill space 
was the "tetrakaidecahedron" (Fig. la) 
of Lord Kelvin (6). This is closely re- 
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lated to the truncated octahedron, one 
of the 13 Archimedean semiregular 
polyhedra; it has eight doubly curved 
hexagonal faces and six quadrilateral 
faces with bowed edges. The curved 
surfaces are a requirement of the mini- 
mization of surface energy (7). 

Matzke and Nestler (8), however, 
have demonstrated that the statistical 
distribution of polygon faces on packed 
soap bubbles differs markedly from 
Kelvin's tetrakaidecahedron in that the 
bubbles showed a predominance of 
pentagonal faces. Studies of metal 
crystallites (7) and vegetable cells (1) 
showed similar distributions (Table 1 
and Fig. 2). 

To date, there has apparently been no 
report of a polyhedron with the appro- 
priate distribution of kinds of faces and 
with the ability to pack to fill space. 
However, such a polyhedron, the /3- 
tetrakaidecahedron, is now proposed 
(Fig. 1c). It can be mechanically de- 
rived from the Kelvin polyhedron (a- 
tetrakaidecahedron) by taking any edge 
common to two hexagons plus the edges 
that meet at each end of this edge (Fig. 
la), rotating them 90? and reconnect- 
ing them. The resultant polyhedron 
(Fig. lb) with four quadrilateral, four 
pentagonal, and six hexagonal faces 
will also pack to fill space. The same 
operation is then performed with the 
same group of edges on the opposite 
side of the polyhedron (Fig. Ic). This 
transformation retains the same number 
of faces (14), vertices (24), and edges 
(36) as the a-tetrakaidecahedron, and 
the vertex juncture angles remain at 
109?28'. The fl-tetrakaidecahedron has 
two quadrilateral, eight pentagonal, and 
four hexagonal faces, which give an 
average of 5.143 sides per face. 

The percentage distribution of the 
kinds of faces on the a-tetrakaidecahe- 
dron and the fl-tetrakaidecahedron and 
their relationship to the distribution of 
faces in natural packings are shown in 
Table 1 and Fig. 2. 

A packing of a group of f/-tetrakai- 
decahedra is shown in Fig. 3. The pack- 
ing arrangement belongs to the space 
group P42/mnm-D4h14 (9). The centers 
of the polyhedra correspond to special 
position 2a, and the nodal points of the 
interstitial network correspond to posi- 
tions 4d and 8j of that space group (9). 

The centers of 8/-tetrakaidecahedra 
cells form a body-centered tetragonal 
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Abstract. A fourteen-faced space-filling polyhedron which closely approximates 
the actual distribution of four-, five- and six-sided polygons found in packings of 
soap bubbles and biological cells is proposed as an alternative to the Kelvin 
tetrakaidecahedron as the ideal polyhedron for these packings. This polyhedron 
may also have relevance to crystallite morphologies and crystal structures. 
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Table 1. Summary of distribution of polygon faces in bubbles, vegetable cells, metal grains, a-tetrakaidecahedron (Kelvin), and [/-tetrakaide- 
cahedron. 

Edges 600 Uniform 100 Small 50 Large Mixture of 45030 Beta Kelvin and alternative 
per bubbles 0.1 bubbles bubbles 50 large and Vegetable brass forms of the 
face3 (0.05 cm ) in (0.4 cm3) in 100 small ran tetrakaidecahedron (%) 
(1) 

or. cm 1 mixture (8) mixture (8) bubbles (8) cels (1 grans () 
(No.) (%) (%) (% ) a 

3 5.1 2.5 
4 10.5 32.9 11.3 22.9 27.3 20.2 42.9 14.3 
5 67.0 58.1 48.1 56.1 39.7 43.6 57.1 
6 22.1 8.9 28.3 19.8 25.4 28.7 57.1 28.6 
7 0.4 11.2 6.0 6.3 4.6 
8 5.9 0.3 0.8 0.7 
9 1.1 0.05 0.1 
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faces in vegetable cells (crosses), uniform 
bubbles (triangles), a/ brass grains (cir- 
cles), mixed bubbles (squares), a-tetra- 
kaidecahedron (hexagons), and /-tetrakai- 
decahedron (diamonds). 
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with the tetragonal lattice included. 
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no surprise that the p-tetrakaidecahe- 
dron is related to the a-tetrakaidecahe- 
dron, which is a basic polyhedron 
packing in the body-centered cubic 

configuration. 
Continuous topological transforma- 

tions of points and bonds permit a 
number of other space-filling polyhedra 
to be derived from this polyhedron. For 
example, as the parameters x and z 
approach zero (that is, as position 8j 
approaches position 2b), the /-tetrakai- 
decahedron packing transforms to the 
rhombic dodecahedron packing (basic 
polyhedron packing in a face-centered 
cubic configuration). If z goes to 
zero (8j->4f), the 3-tetrakaidecahedron 
transforms to a space-filling polyhedron 
with eight curved pentagonal faces and 
four rhombic faces. Then continuing 
from this polyhedron, if y ceases to 
equal x (4f->8i), a distorted form of 
a-tetrakaidecahedron is defined. This is 
the minimum symmetry version of the 
a-tetrakaidecahedron packing in this 
space group. 

The properties of this polyhedron 
and its packing must be more thor- 
oughly examined; namely, the dihedral 

angles must be calculated, the recipro- 
cal polyhedron and net determined, re- 
lationship of this polyhedron to ellipsoid 
packing systems and its hierarchical 
placement in the family of unitary 
space-filling polyhedra found, and rela- 
tionship of the surface area to volume 
calculated. The relevance of this poly- 
hedra packing to the structure of liquids 
(10) and to clathrate compounds such 
as the gas hydrates must also be con- 
sidered. 

In preliminary calculations of the 
ratio of surface area to volume, the ,/- 
tetrakaidecahedron was found to re- 
quire roughly 4 percent more surface 
area to enclose the same volume as the 
a-tetrakaidecahedron. Nonetheless, for 
reasons as yet unknown, natural pack- 
ings of bodies seem to prefer the com- 
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position of faces exemplified on the 
,/-tetrakaidecahedron to the more regu- 
lar composition of faces on the a- 
tetrakaidecahedron. 
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Distilled-Deionized Water: 
A System for Preparing and 

Distributing Large Volumes 

Abstract. A system for preparing and 
distributing 100 liters of distilled- 
deionized water per day is described. 
Novel features are an overflow regu- 
lator, a "barometer" tube (permitting 
secondary reservoirs), and a pressure- 
controlled shutoff valve. 

A simply operated, inexpensive, and 
self-regulated system for preparing and 
distributing large volumes of distilled- 
deionized water is described (Fig. 1). 
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