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Dolphins and, Multifrequency, 

Multiangular Images 

Most discussions of dolphins inspect- 
ing the environment (1) stress their 
presumed ability to range on objects by 
echo, as by sonar; I submit that they 
"see" objects acoustically about as well 
as we do visually. My reasoning fol- 
lows; I have no proof. 

Dolphins emit a series of whistles, 
slide tones, and sharp sounds (clicks) 
having basic frequencies that cover a 
considerable range (200 to 150,000 hz). 
Each may have more than one trans- 
mitter and receiver. In any case, dol- 
phins are generally moving, so that, no 
matter what object they are concerned 
with, they observe it from different 
angles. Thus they obtain multifre- 
quency, multiangular information about 
the object. 

From multiangular information (an- 
gular width of lobes in the pattern of 
scattered intensity) the lateral separa- 
tion of centers on the object that scatter 
sound can be determined, and from 
multifrequency data the radial depth 
between centers can be determined. For 
simple geometry the lateral separation 
L in half-wavelengths X/2 between a 
pair of scatterers is 
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where r is the range to the object; Ax 
is the lateral distance, at right angles to 
the "line of sight," between interference 
fringes at one frequency, due to the 
pair (that is, the lateral distance re- 
quired to produce phase shift of 27r in 
the intensity of the received signal; the 
variation from maximum to minimum 
depends on the product of the strengths 
or cross sections of the scatters); f is 
the frequency; and Af is the change in 
frequency, at one location, needed for 
phase change of 2r in the intensity of 
the received signal. 

Determination of L and R is equiva- 
lent to determination of the true separa- 
tion (L2 + R2)05 at an angle tan-1 
(R/L). With more complicated three- 
dimensional geometry, additional trigo- 
nometric projection terms enter the 
equations. (Distances are measured in 
half-wavelengths rather than whole 
wavelengths because of the two-way 
path from the dolphin to the object 
and return. In Eq. 2 one may replace 
/A by the speed of sound in water, but 
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such replacement masks the funda- 
mental symmetry of the two equations.) 
If transmission and reception are phase- 
coherent and the dolphin has sensory 
capabilities to detect phase (as I believe 
humans do not), each center can be 
located uniquely in position relative to 
some arbitrary reference (instead of 
locations by pairs), and the strength of 
the center can be determined directly. 

In a sense, none of this argument is 
new; in 1802 Young published (2) his 
famous principles of interference, which 
are taught in a different context of the 
"double-slit experiment" to all high 
school students of physics. 

Consider a typical sonogram (a plot 
of frequency and intensity versus time) 
of two or three people talking at once, 
which looks fairly hopeless to decipher 
optically. Then compare the analysis 
with that done in real time by anyone's 
ear. While we as humans are busy try- 
ing to program big computers to do fast 
Fourier transforms (3) on vast amounts 
of data on underwater acoustics (to 
determine the Fourier components of 
variation of signal strength with space 
(Eq. 1) or with frequency (Eq. 2), and 
thus to analyze a complicated object), 
the dolphin probably does the same job 
in real time with little conscious effort. 
The ordinary laws of acoustics show 
that, with reasonable signal-to-noise 
ratio, precision of the order of one 
wavelength (for example, 1 cm at 150,- 
000 hz) should be available to a dolphin 
acoustically inspecting an object and 
constructing a three-dimensional image 
of it. 

SEVILLE CHAPMAN 

Physics Division, Cornell 
Aeronautical Laboratory, 
Buffalo, New York 14221 
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Computer-Based Journal 

Distribution for the Individual 

The requirements of the user must 
always be a primary consideration in a 
system like the one proposed by Brown, 
Pierce, and Traub for computerized 
journal publication (1). Although 
stressing human as opposed to hard- 
ware implementation, they did not dis- 
cuss several points. 

What a system can provide to the user 
is mainly a problem of access, that is, 
how to specify to the computer what 
output is desired. The system must op- 
erate on terms that the subscriber uses 
and understands in his own work. Gen- 
eration of indices on the basis of title, 
abstract, and content wording is tech- 
nically feasible, and common-usage or 
nickname terms also might be used. 
The fact that the "customer is always 
right" may make the programmer's job 
more difficult, but an indexing system 
built on a series of acronyms and codes 
can rapidly become confusing and lose 
its utility to the subscriber. 

Brown, Pierce, and Traub advocate 
storing outdated lists of index terms, 
requiring subscribers to understand the 
Zeitgeist surrounding topics from pre- 
vious indices. A better solution might 
be a cumulative index, perhaps for use 
with older individual lists. A method is 
needed to amend indices-with new 
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terms, apparatus, and techniques that 
continually crop up in the literature- 
and to delete obsolete topics. Since the 
balance between relevance and cover- 
age is a function of index adequacy, 
terms used for indexing must be se- 
lected with extreme care. 

The authors did not discuss the train- 
ing, indoctrination, or knowledge neces- 
sary for a new subscriber to use a jour- 
nal computer system. Presumably, this 
much-needed information would be sup- 
plied at the time of subscription. The 
training problem has apparently been 
overlooked in some other systems (2). 

A major advantage of computerizing 
journal publication is that undue publi- 
cation lags can be eliminated. Although 
preprints may have filled a need by 
making information available between 
completion of an investigation and sub- 
sequent publication, they are obviously 
too informal. A listing of research in 
progress could keep other workers 
aware of research not yet published and 
help avoid duplication of effort. High- 
speed computers make such listings en- 
tirely feasible. 

PATRICK A. CABE 

Goodyear Aerospace Corporation, 
Akron, Ohio 
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