
Feeding Schedule Alteration of Daily Rhythm in 

Tyrosine Alpha-Ketoglutarate Transaminase of Rat Liver 

Abstract. Liver tyrosine alpha-ketoglutarate transaminase has a daily rhythm 
such that in rats fed on an unrestricted basis the activity is highest at approxi- 
mately 11:00 p.m. In contrast, rats fed only from 8:00 a.m. to noon show a 
markedly different rhythm in the enzyme, with maximum activity at 11:00 a.m. 
Controlling the time of food intake seems to be a useful means of studying the 
mechanism of the daily changes in this enzyme. 
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Structure of Membranes: Reaction 
of Red Blood Cell Membranes 
with Phospholipase C 

Abstract. Treatment of human red 
blood cell membranes with phospholi- 
pase C releases 68 to 74 percent of the 
total membrane phosphorus into solu- 
tion, through hydrolysis of membrane 
phospholipids to diglycerides and water- 
soluble phosphorylated amines. In spite 
of this drastic change, the membrane 
remains intact in phase microscopy, and 
the average protein conformation in the 
membranes, as determined by circular 
dichroism measurements in the ultra- 
violet, is unaffected. These results are 
readily explained by a model of mem- 
brane structure that is stabilized by 
hydrophobic interactions and in which 
the polar and ionic heads of lipids are 
on the outer surfaces of the membrane, 
in contact with the bulk aqueous phase 
and accessible to the action of phospho- 
lipase C. 

We have recently reported (1) on 
the optical rotatory dispersion and cir- 
cular dichroism spectra, in the wave- 
length region of the peptide bond ab- 
sorption bands, of intact red blood cell 
membranes and of fragments of Bacil- 
lus subtilis membranes. The spectra for 
the two very different membrane prep- 
arations are remarkably similar; they 
are also similar to the optical rotatory 
dispersion spectra obtained by others 
with chloroplast-lamellae fragments (2) 
and to membrane preparations from 
tumor cells (3) and from mitochondria 
(4). The spectra are characteristic of the 
protein portion of the membrane, with 
only negligible contributions from the 
lipid constituents (1, 5); and they indi- 
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(4). The spectra are characteristic of the 
protein portion of the membrane, with 
only negligible contributions from the 
lipid constituents (1, 5); and they indi- 
cate that the protein is in a partially heli- 
cal conformation. The closely similar 
spectra suggested that a major fraction 
of the protein of these different mem- 
branes is closely similar in conforma- 
tion and therefore in chemical struc- 
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ture; the protein was inferred to be the 
membrane "structural protein" of Green 
and his colleagues (6, 7). This inference 
has found support in the recent work 
of Steim and Fleischer (5) on the 
structural protein of mitochondria. 

In connection with these data, we 
proposed a new model for the general 
structural organization of the compo- 
nents of membranes (1). Wallach and 
Zahler (3) independently proposed a 
model that is similar in many respects. 
In this model, the membrane compo- 
nents are held together predominantly 
by noncovalent hydrophobic interac- 
tions, as had been suggested earlier 
(6, 8). The ionic and polar heads of 
the phospholipids, together with the 
charged groups of the proteins, are all 
situated at the exterior surfaces of the 
membranes in contact with the bulk 
aqueous phase. The interior of the 
membrane contains the hydrophobic 
tails of the phospholipids, the rest of 
the protein, and other hydrophobic 
components, such as cholesterol. By 
contrast, membrane models of the Dav- 
son-Danielli-Robertson type (9) have 
the ionic and polar heads of the phos- 
pholipids submerged under a mono- 
layer of protein on both surfaces of 
the membrane, the entire structure held 
together predominantly by electrostatic 
interactions between the ionic heads of 
the phospholipids and the charged 
groups of the protein monolayers. 

We now report some results of the 
modification of red blood cell mem- 
branes with preparations of phospho- 
lipase C. This enzyme specifically cata- 
lyzes the hydrolysis of phospholipids to 
diglycerides and water-soluble phos- 
phorylated amines (10). Human red 
blood cell membranes were prepared 
by the method of Dodge et al. (11), as 
in our previous studies (1). The intact 
membranes were then thoroughly di- 
alyzed into a buffer containing 5 mM 
imidazole, 0.1M KC1, and 2 mM CaCl2 
at pH 7.3. A commercial preparation 
of phospholipase C from Clostridium 
welchii (12) was added to membranes at 
a concentration corresponding to about 
1 unit per milligram of membrane pro- 
tein. The mixture was incubated at 
37?C and the extent of reaction was 
followed by measuring the phosphorus 
released into the supernatant after di- 
lution and centrifugation of the mem- 
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was released into the supernatant with- 
in the first 10 minutes of the reaction. 
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Since by far the largest part of the 
membrane phosphorus is in the form 
of phospholipids (see 14), this figure 
represents the amount of phospholipid 
that was hydrolyzed. Neither longer in- 
cubation times nor a second addition of 
enzyme raised this value. The superna- 
tant did not contain detectable amounts 
of cholesterol (15) or of carboxylic 
acid esters (16), which indicates that 
lipid components and diglycerides were 
not released from the membrane by 
treatment with phospholipase C. The 
absorbance at 280 m/it of the superna- 
tant after treatment was identical with 
that of an untreated control, showing 
that protein was not released from the 
membrane. The membranes remained 
intact when viewed in the phase micro- 
scope; no electron microscopic observa- 
tions were made. 

The circular dichroism spectrum of 
the membranes treated with prospho- 
lipase C was indistinguishable from that 
of an untreated control (1); the mini- 
mum at 224 m/A and the smaller mini- 
mum at 210 m/ were unchanged in 
either magnitude or position by action 
of the enzyme (17). 

These results indicate that rapid 
cleavage and release of a major fraction 
of the ionic heads of the phospholipids 
occur upon the action of phospholipase 
C on intact cell membranes, without 
disruption of the membrane or alter- 
ation of the overall conformation of the 
protein in the membrane. This suggests 
that: (i) the phosphoester bonds that 
are hydrolyzed are readily accessible to 
the phospholipase C molecule in the in- 
tact membrane; and (ii) electrostatic 
interactions between phospholipids and 
membrane proteins play only a second- 
ary role, presumably to hydrophobic 
interactions, in maintaining the integrity 
of the membranes and in determining 
the conformation of the membrane 
proteins. These data are, therefore, 
more consistent with the model of 
membrane structure we have proposed 
(1) than with the Davson-Danielli- 
Robertson (9) model. 

JOHN LENARD* 
S. J. SINGER 

Department of Biology, University of 
California, La Jolla 92037 
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Genetic Selection for Voluntary 
Alcohol Consumption in the 
Albino Rat 

Abstract. By outbreeding Wistar rats 
and selecting for breeding animals that 
differ in their alcohol consumption, we 
have raised two genetically difjerent 
lines. Marked differences between the 
sexes and the strains were evident by 
the eighth generation. Selection is re- 

flected in the regression coefficient .754, 
which accounts for 65.9 percent of 
the variance. The heritabilities differ 
significantly in the two sexes, h2 for 
the males being .263, and for the fe- 
males .371; this difference seems main- 
ly ascribable to sex-linkage of some of 
the genetic factors controlling volun- 
tary consumption of alcohol. 

The underlying assumption in experi- 
ments on voluntary selection of alco- 
hol is that heritable biochemical re- 
actions which control physiological 
mechanisms also to some extent regu- 
late alcohol consumption. This hypoth- 
esis has been the basis of numerous 
animal experiments used to clarify the 
heritability of voluntary consumption 
of alcohol. Reed (1) investigated the 
selection of alcohol by six different in- 
bred lines of rats, and, although the 
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Genetic Selection for Voluntary 
Alcohol Consumption in the 
Albino Rat 

Abstract. By outbreeding Wistar rats 
and selecting for breeding animals that 
differ in their alcohol consumption, we 
have raised two genetically difjerent 
lines. Marked differences between the 
sexes and the strains were evident by 
the eighth generation. Selection is re- 

flected in the regression coefficient .754, 
which accounts for 65.9 percent of 
the variance. The heritabilities differ 
significantly in the two sexes, h2 for 
the males being .263, and for the fe- 
males .371; this difference seems main- 
ly ascribable to sex-linkage of some of 
the genetic factors controlling volun- 
tary consumption of alcohol. 

The underlying assumption in experi- 
ments on voluntary selection of alco- 
hol is that heritable biochemical re- 
actions which control physiological 
mechanisms also to some extent regu- 
late alcohol consumption. This hypoth- 
esis has been the basis of numerous 
animal experiments used to clarify the 
heritability of voluntary consumption 
of alcohol. Reed (1) investigated the 
selection of alcohol by six different in- 
bred lines of rats, and, although the 
investigation was not designed for 
genetical research, the results reveal 
differences between the strains. Mar- 
dones (2) set out to raise two inbred 
rat strains that would differ in their 
alcohol habits; he found the differences 
to be genetically determined, although 
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