
Feeding Schedule Alteration of Daily Rhythm in 

Tyrosine Alpha-Ketoglutarate Transaminase of Rat Liver 

Abstract. Liver tyrosine alpha-ketoglutarate transaminase has a daily rhythm 
such that in rats fed on an unrestricted basis the activity is highest at approxi- 
mately 11:00 p.m. In contrast, rats fed only from 8:00 a.m. to noon show a 
markedly different rhythm in the enzyme, with maximum activity at 11:00 a.m. 
Controlling the time of food intake seems to be a useful means of studying the 
mechanism of the daily changes in this enzyme. 
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Structure of Membranes: Reaction 
of Red Blood Cell Membranes 
with Phospholipase C 

Abstract. Treatment of human red 
blood cell membranes with phospholi- 
pase C releases 68 to 74 percent of the 
total membrane phosphorus into solu- 
tion, through hydrolysis of membrane 
phospholipids to diglycerides and water- 
soluble phosphorylated amines. In spite 
of this drastic change, the membrane 
remains intact in phase microscopy, and 
the average protein conformation in the 
membranes, as determined by circular 
dichroism measurements in the ultra- 
violet, is unaffected. These results are 
readily explained by a model of mem- 
brane structure that is stabilized by 
hydrophobic interactions and in which 
the polar and ionic heads of lipids are 
on the outer surfaces of the membrane, 
in contact with the bulk aqueous phase 
and accessible to the action of phospho- 
lipase C. 

We have recently reported (1) on 
the optical rotatory dispersion and cir- 
cular dichroism spectra, in the wave- 
length region of the peptide bond ab- 
sorption bands, of intact red blood cell 
membranes and of fragments of Bacil- 
lus subtilis membranes. The spectra for 
the two very different membrane prep- 
arations are remarkably similar; they 
are also similar to the optical rotatory 
dispersion spectra obtained by others 
with chloroplast-lamellae fragments (2) 
and to membrane preparations from 
tumor cells (3) and from mitochondria 
(4). The spectra are characteristic of the 
protein portion of the membrane, with 
only negligible contributions from the 
lipid constituents (1, 5); and they indi- 
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cate that the protein is in a partially heli- 
cal conformation. The closely similar 
spectra suggested that a major fraction 
of the protein of these different mem- 
branes is closely similar in conforma- 
tion and therefore in chemical struc- 
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