These compounds probably would be stored for an appreciable length of time in small algivorous rotifers, which are commonly eaten by Asplanchna. The absence of MF-inducing activity in the blue-green alga Anacystis nidulans (2) is now also explicable, for this organism is devoid of α -tocopherol and α -tocopherylquinone (19).

The function of vitamin E compounds in invertebrates is very poorly known. They have been suspected of enhancing vigor and fecundity in the cladoceran Daphnia (20); they stimulate egg sac formation in copepods (21) and are essential for spermatogenic activity in the cricket Acheta (22). Our report appears to be the first to show that these compounds can initiate either a transition from parthenogenetic to sexual reproduction or a marked change in body morphology.

The vitamin E control of MF production in Asplanchna could be very adaptive if this vitamin was required for spermatogenesis, as it is in crickets, for it would benefit a population to make mictic females only under conditions when functional males could be produced. Hence a possible explanation for the biological significance of the response to plant lipids considered earlier (2) can now be offered.

There are many occasions when the biological activities of natural and synthetic vitamin E compounds need to be determined. For these, bioassays using the MF- and hump-producing responses of A. brightwelli and A. sieboldi appear admirably suited. Although the responses are probably very complex, they are discrete, extremely sensitive, and very easily and quickly detected. Furthermore, the practical convenience of this system over those requiring tedious maintenance of vertebrates deficient in vitamin E is obvious. Also for these reasons, Asplanchna may prove useful in studies of the mechanism of the action of vitamin E.

JOHN J. GILBERT Department of Biological Sciences, Dartmouth College,

Hanover, New Hampshire

GUY A. THOMPSON, JR. Department of Botany, University of Texas, Austin

References and Notes

- 1. J. J. Gilbert, Physiol. Zoöl., in press. 2. ——, Proc. Nat. Acad. Sci. U.S. 57, 1218 (1967).
- How (1907).
 How (1907).
 For a discussion of the taxonomy of A. brightwelli Gosse and A. sieboldi Leydig see appendix of (1)
- 5. C. W. Mitchell, J. Exp. Zool. 15, 91 (1913);

736

H. Kiechle and H. Buchner, Rev. Suisse Zool. 73, 283 (1966). C. W. Birky, Jr., J. Exp. Zool. 155, 273 283 (1966).

- 6. C. (1964).
- We thank Dr. C. W. Birky, Jr., for provid-ing us with these organisms. When grown under conditions inducing mictic female production in *A. brightwelli*, the *A. sieboldi* clone produced many females bearing small and embryos which were dark 6995 and always failed to complete development. These females were presumed to be mictic. However, due to uncertainty about this, this clone was not used to assay the mictic-female inducing activity of lipids. An this female inducing activity of lipids. An *A. sieboldi* clone has since been found which can be used to assay at the same time both mictic-female and hump inducing acat the same time tivity.
- 8. Purchased from Albert Mills, Easter Road, Edinburgh 7, Scotland. E. J. Barron and D. J. Hanahan, J. Biol.
- E. J. Barron and D. J. Chem. 231, 493 (1958).
 We thank Dr. J. H. Copenhaver for sistance in the digestion procedure. Copenhaver for as-
- sistance in the digestion procedure.
 11. Oxidation via exposure on thin-layer plate to iodine vapor; P. G. Roughan, Anal. Biochem. 19, 461 (1967).
 12. Prepared by refluxing dl-a-tocopherol with acetic anhydride and pyridine.
 13. Prepared by refluxing dl-a-tocopherol with succine anhydride and myridine.
- succinic anhydride and pyridine. Methods of Vitamin Assay, Association of 14. Vitamin Chemists, Ed. (Interscience, New York, 1966), p. 371. The loss of activity following saponification reported earlier (2)was probably due to oxidation, for no pre-
- cautions were taken to minimize this. Authentic α -tocopherol in marker lanes 15. made visible with an iodine spray, while the

- rest of the plate was protected by glass. 16. (i) Assay for rat fetal resorption: M. Joffe and P. L. Harris, J. Amer. Chem. Soc. 65, 925 (1943); H. Gottlieb, F. W. Quackenbush, H. Steenbock, J. Nutrition 25, 433 (1943). (ii) Assay for nutritional muscular dystrophy in rabbits: E. L. Hove and P. L. Harris. in rabbits: E. L. Hove and P. L. Harris, J. Nutrition 33, 95 (1947). (iii) Assay for respiratory decline in liver homogenates: K. Schwarz, Vitamins and Hormones, 20, 463 (1962).
- Assay for rat fetal resorption: J. Bunyan, D. McHale, J. Green, Brit. J. Nutrition 17, 391 17 (1963).
- 18. This matter is treated in the following reviews ews and symposium: F. D. M. Reichard, A. Nason, V Vasington, Vitamins and M. Reichard, A. Nason, Vitamins and Hormones 18, 43 (1960); *ibid.* 20, 373 (1962);
 G. A. G. Pitt and R. A. Morton, Annu. Rev. Biochem. 31, 491 (1962); U. Gloor and O. Wiss, *ibid.* 33, 313 (1964).
 M. D. Henninger, H. N. Bhagavan, F. L. Crane, Arch. Biochem. Biophys. 110, 69 (1965).
 A. Vichoware and L. Coherg dama J. Bharma.
- 20. A. Viehoever and I. Cohen, Amer. J. Pharm.
- **110**, 1 (1938). H. Jakobi, *Tribuna Farm. (Brazil)* **25**, 73 21. H.
- (1957).
 J. E. S. Meikle and J. E. McFarlane, *Can. J. Zool.* 43, 87 (1965).
- Supported by NSF grants GB 5668 to J.J.G. and GB 5577 to G.A.T. and PHS research career program award AM-K3-9147 to G.A.T. We thank Mrs. Pearl Woo and G. Schoolnik for technical assistance. J. K assistance. thanks the Department of Biochemistry, University of Washington, for the use of excellent facilities during the course of this work.
- 3 January 1968

Myoglobin Subfractions: Abnormality in Duchenne Type of Progressive Muscular Dystrophy

Abstract. Human metmyoglobin was separated electrophoretically into four subfractions: Mb₁, Mb₂, Mb₃ and Mb₄, which divide into at least two biochemically independent groups: Mb_1 and Mb_2 , and Mb_3 and Mb_4 . In normal subjects, Mb_1 constituted the predominant component; Mb_2 , Mb_3 , and Mb_4 were the minor components in this descending order. In the Duchenne type of progressive muscular dystrophy, on the contrary, a remarkable decrease in Mb1 and a concomitant increase in Mb_s were observed. This unique abnormality in the relative distribution of myoglobin subfractions was recognized only in the Duchenne type and not in other types of progressive muscular dystrophy or in other myopathies.

We have already reported (1, 2) that the absorption maximum in the ultraviolet spectrum of metmyoglobin, in the Duchenne type of progressive muscular dystrophy (PMD), was about 275 m_{μ}, in contrast to the value of 281 m μ for metmyoglobin from the other types of PMD, spinal progressive muscular atrophy, polymyositis, myoglobinuria, and normal subjects. Further studies of the myoglobin of PMD have shown that this spectral abnormality is ascribable to an abnormal distribution pattern of myoglobin subfractions.

Rossi-Fanelli et al. (3) and Perkoff et al. (4) reported that human skeletal myoglobin was heterogeneous and was separated into three to four components by paper electrophoresis or DEAE cellulose-column chromatography. Kossman et al. (5), however, reported that minor components of myoglobin were artifactual. Existence of the myoglobin subcomponents, therefore, is still problematical, and rigorous physicochemical characterization of the subcomponents has not been reported.

Perkoff (6) claimed that myoglobin was separated into three fractions on DEAE cellulose-column chromatography, and named them F_1 , F_2 , and F_3 . He observed that several diseases, including childhood dystrophy, dermatomyositis and myoglobinuria, caused a decrease in F_1 and F_2 , with a concomitant increase in F_3 ; there was similar change in fetus myoglobin.

In our studies the metmyoglobin was isolated and purified by Singer's method (1) from the skeletal muscles of normal subjects and patients having various myopathies. The metmyoglobin

was then subjected to electrophoresis on cellulose acetate membrane and polyacrylamide gel.

Metmyoglobin from normal subjects (12 cases) and from patients having various types of PMD [Duchenne type (six cases), limb-girdle type (four cases), and facioscapulohumeral type (two cases)], polymyositis (four cases), myoglobinuria (one case), or spinal progressive muscular atrophy (two cases) was examined by this technique. On both cellulose acetate membrane and polyacrylamide gel, myoglobin from normal subjects and myopathies was separated into four subfractions that were designated, respectively, Mb_1 , Mb₂, Mb₃, and Mb₄, starting from the cathodic side of the cellulose acetate membrane (Fig. 1).

All four of these subfractions were benzidine-positive and made positive precipitation against antimyoglobin rabbit serum. In a repetitive electrophoresis of each of four myoglobin subfractions, obtained from normal skeletal muscle by polyacrylamide-gel electrophoresis, Mb_1 and Mb_2 were found to be partially interconvertible, and the same was true of Mb_3 and Mb_4 . However, no interconversion was observed between the two groups: Mb_1 and Mb_2 on the one hand, and Mb_3 and Mb_4 on the other.

Myoglobin subfractions thus obtained were then examined by spectrophotometry (1). In a visible region, the characteristic spectrum of myoglobin, displaying a plateau between 570 and 610 m μ , was observed in all subfractions. In an ultraviolet region, the absorption maximum of Mb_1 and Mb_2 was found at 281 m μ , while that of Mb_3 and Mb_4 was at about 275 m_µ (Fig. 2).

We may conclude that human myoglobin can be separated into four subcomponents by electrophoresis on cellulose acetate membrane or polyacrylamide gel, and that among these four there are at least two independent groups (Mb₁ and Mb₂, Mb₃ and Mb₄) representing different protein constructions.

The relative amounts of these myoglobin subfractions separated on cellulose acetate membrane were relatively constant in normal subjects: Mb₁, 69.2 to 88.9 percent (mean of 12 cases, 78.3 percent); Mb_2 , 8.2 to 14.3 percent (mean, 11.8 percent); Mb₃, 2.7 to 13.1 percent (mean, 7.0 percent); and Mb₄, 0.8 to 6.9 percent (mean, 2.9 percent) (Fig. 1a).

On the contrary, myoglobin from 16 FEBRUARY 1968

Fig. 1. Electrophoretic patterns of metmyoglobin from human skeletal muscle on cellulose acetate membrane. Electrophoresis was performed in a discontinuous buffer system (anode, 0.2M tris buffer, pH 9.1; cathode, barbital buffer, pH 8.6); electrophoretic strip was stained with amido black 10B. The metmyoglobin of normal control (a) was separated into four subfractions, Mb1 predominating. In the Duchenne type of progressive muscular dystrophy (b), a marked decrease in Mb₁ and a corresponding increase in Mb₈ are apparent.

the Duchenne type of PMD displayed a unique change in the pattern of myoglobin subfractions in all six cases examined: Mb_1 , 5.8 to 48.4 percent (mean, 25.5 percent); Mb_2 , 1.3 to 29.1 percent (mean, 13.2 percent); Mb₃, 32.4 to 90.3 percent (mean, 58.4 percent); and Mb₄, 1.3 to 6.1 percent (mean, 3.1 percent). A marked decrease of Mb₁ and an increase of Mb₃ were characteristic of myoglobin in the Duchenne type of PMD (Fig. 1b). The wide discrepancy in the relative contents of the subcomponents may be due to a partial loss of Mb₃ and Mb₄ in our analytical procedures.

WAVE LENGTH (mu)

Fig. 2. The ultraviolet-absorption spectra at pH 7.0 of four subfractions of metmyoglobin from normal skeletal muscle. Subfractions were separated by polyacrylamide-gel electrophoresis, with tris-EDTA-borate buffer, pH 8.6. The absorption maxima observed were 281 m μ for subfractions Mb1 and Mb2, and about 275 $m\mu$ for Mb_3 and Mb_4 .

This abnormal feature of myoglobin was not observed in neurogenic muscular atrophy and other myopathies, including other types of PMD, polymyositis, and myoglobinuria, although some variations in the relative amounts of Mb₁ and Mb₂ were often observed in these cases. Our results indicate that the blue shift of the ultravioletabsorption maximum of metmyoglobin in the case of the Duchenne type of PMD (1) is due to an abnormality in the relative contents of the myoglobin subfractions.

The apparent contradiction between our results and Perkoff's (6) may be due to the difference in the methods of isolation and fractionation of myoglobin. Perkoff has claimed that the content of F₃ changes rather nonspecifically in various types of myopathies; this claim indicates that F_3 in his definition is grossly contaminated with nonmyoglobin proteins. Kossman's failure (5) to detect myoglobin subfractions also may be due to the difference in the isolation of myoglobin, in that Mb₃ and Mb₄ in our definition are lost during the isolation.

We consider the described abnormality in the pattern of myoglobin subfractions of the Duchenne type of PMD to be of great importance in understanding of the pathogenesis of the PMD.

To establish a biochemical and genetic entity of the subfractions of myoglobin, amino acid analysis of each myoglobin subfraction has been carried out with an automatic amino acid analyzer. A preliminary result suggests no significant difference between the amino acid compositions of Mb₁ and Mb₂, but that the composition of Mb₃ differs apparently from that of Mb₁ and Mb₂ (7).

KAZUO MIYOSHI, KAZUO SAIJO YOJIRO KURYU, YASUO OSHIMA MASUHIRO NAKANO, HISAOMI KAWAI Department of Internal Medicine, School of Medicine, Tokushima University, Tokushima, Japan

References

- K. Miyoshi, K. Saijo, Y. Kuryu, Y. Oshima, Science 142, 490 (1963).
 —, H. Kawai, M. Nakano, M. Miyake, M. Yoshimatsu, Recent Advan. Res. Nervous System 9, 317 (1965) (in Japanese).
 A. Rossi-Fanelli and E. Antonini, Arch. Bio-chem. Biophys. 65, 587 (1955).
 G. T. Perkoff, K. L. Hill, D. M. Brown, F. H. Tyler, J. Biol. Biochem. 237, 2820 (1962).
 R. J. Kossman, D. C. Fainer, S. H. Boyer, Cold Spring Harbor Symp. Quant. Biol. 29, 375 (1964).

- 375 (1964).
 6. G. T. Perkoff, New Engl. J. Med. 270, 263
- 1964).
- 7. H. Kawai, K. Saijo, K. Miyoshi, A. Tsugita, in preparation.

26 September 1967