
be flat and less than 0.5 mm thick 
throughout most of its length. The 
conus is 2.5 mm long and 4.0 mm 
wide across the anterior edge, and has 
a depth of 2.0 mm. No other features 
of the shell are evident. The radio- 

graphs (Fig. 4) show spots within the 
shell area, but spots of similar shape 
and density are also seen outside of 
the shell and are probably small bodies 
of pyrite. The shell appears to be com- 
plete but fractured. 

The nature of the shell and its small 
size relative to the arm crown leave 
little doubt that the shell was internal, 
and that the animal was a coleoid. 
The presence of a small open conus 
and the lack of a phragmocone suggest 
that the shell may be a teuthid gladius. 
However, it appears not to be dif- 
ferentiated into median field and wings, 
as in the teuthids, nor are two of the 
arms modified as grasping tentacles, as 
in most teuthids and sepiids. Arms of 
essentially equal length, with hooks in 
double rows, are belemnite and phrag- 
moteuthid characters, although the shell 
is unlike that of either of these groups. 

If a teuthid or a sepiid, Jeletzkya 
is certainly the oldest representative of 
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In electron-microprobe x-ray analy- 
sis, a focused electron beam is used to 
excite characteristic x-ray spectra in 

sample volumes of a few cubic mi- 

crons; the intensity of the character- 
istic x-rays is a function of element 
concentration. For qualitative and 

quantitative elemental analysis, char- 
acteristic x-rays are selected with crys- 
tal x-ray spectrometers. These spec- 
trometers separate the x-ray emission, 
according to wavelength, by diffrac- 
tion from a crystal (wavelength dis- 

persion) and commonly cover a wave- 

length range from about 1 to 88 A 
(12 to 0.15 kev). 

Detection and separation of x-ray 
spectra can also be achieved by use of 

energy-dispersion characteristics of cer- 
tain types of x-ray detectors, where the 
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from the Early Jurassic onward. The 

discovery of such a creature in the 
Paleozoic was anticipated by Jeletzky. 
In a recent monograph he stated his 
belief that "now-known taxa of fossil 
belemnite-like and teuthid Coleoidea, 
other than the Jurassic and Cretaceous 
belemnites proper, represent only a 
very small percentage of the taxa that 
actually lived in Middle to Late Paleo- 
zoic, Mesozoic and Cenozoic seas" 
(5). 
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amplitude of the detector output signal 
is proportional to x-ray photon energy. 
The main advantage of energy disper- 
sion over wavelength dispersion is its 

ability to detect all lines in the emis- 
sion spectrum simultaneously and with 

high photon-counting efficiency. Gas 

proportional detectors were first used 
for energy dispersion in electron- 
microprobe analysis by Dolby (1) and 
Birks and Batt (2). The method is 
limited by the resolution of the gas 
proportional detector - approximately 
1.3 to 1.8 kev for CuKa radiation. 
Resolution is defined as the width of 
the measured x-ray line at half the 

height of the peak above background. 
Solid-state detectors with signifi- 

cantly higher resolution (1.1 kev) have 

recently been applied to x-ray photon 
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counting (3). We now describe the ap- 
plication of such a detector (manufac- 
tured by ORTEC ), having a resolution 
of 0.6 kev, to an ARL e.lectron micro- 
probe (4). This higher resolution sub- 
stantially improves separation of charac- 
teristic x-ray lines in complex x-ray 
spectra, and line-to-background ratios. 

The solid-state energy-dispersion 
spectrometer (Fig. 1) consists of a 
cooled lithium-drifted silicon diode, a 
low-noise preamplifier (ORTEC 116), 
a linear amplifier (ORTEC 440), a 
multichannel (1024) analyzer (Nuclear 
Data 2200), and a high-speed printer 
(Franklin 1220). The detector and 
first stage of the preamplifier, cooled 
by liquid nitrogen, are mounted inside 
a separate vacuum chamber which is 
isolated from the main vacuum of the 
electron probe by a 0.125-mm beryl- 
lium witndow. 

The detector is mounted in an exist- 
ing x-ray port of the electron-micro- 
probe analyzer, 25 cm from the target, 
at an x-ray emergence angle of 52.5 
deg. The active area of the detector 
is 0.5 cm2, with an active depletion 
depth of 2 mm. The preamplifier is 
a charge-sensitive field-effect transistor 
having low noise-high gain character- 
istics; it is closely coupled to the de- 

signal and impedance matching to the 
linear amplifier. Gain and pulse shap- 
ing of the preamplified signal is accom- 
plished by the linear amplifier. The 
amplified output signal from the 
linear amplifier is coupled to the 
analog-to-digital converter of a multi- 
channel analyzer that processes pulses 
according to height (that is, energy) 
and stores them in the appropriate 
memory location. The stored energy 
spectrum can then be displayed on an 

oscilloscope screen for visual inspec- 
tion, printed out on a high-speed print- 
er, or plotted as an analog signal on an 

x-y recorder. 
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and energy dispersion of x-rays of about 3 to 30 kiloelectron volts in the electron- 
microprobe x-ray analyzer. Energy resolution is sufficient to separate peaks of 
characteristic x-rays of elements adjacent in the periodic system at atomic number 
20 and higher. The detected x-ray spectrum emitted from an unknown sample 
can be recorded with a multichannel analyzer in approximately 60 seconds. 
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of the electron beam (commonly be- 
tween 30 and 50 kev) rather than by 
any limitations of the detector. 

The results of our study show that 
lithium-drifted silicon solid-state detec- 
tors are superior in performance to 
gas detectors in the energy range from 
3.0 to 30 kev. The improved resolu- 
tion of an energy-dispersion spec- 
trometer equipped with a solid-state 
detector adds versatility and analytic 
capability to the electron-microprobe 
x-ray analyzer. The particular advan- 
tage of such a spectrometer is that 
qualitative analysis of samples of un- 
known composition is obtained in 
tens of seconds. Complete spectra 
emitted from a sample may be record- 
ed and then displayed on an oscillo- 
scope screen for rapid visual inspec- 
tion, or recorded in digital form for 
further evaluation by computer. Many 
of the readout techniques developed 
for electron-microprobe analysis in re- 
cent years [for example, electron- 
beam scanning and concentration map- 
ping (7)] can be performed with this 
type of spectrometer in less time than 
with a crystal spectrometer. Energy- 
dispersion spectrometers detect x-rays 
without regard to direction of the in- 
coming photon; thus large off-axis de- 
flection of the electron beam (for ex- 
ample, beam-scanning analysis) can be 
tolerated without loss of intensity. 

As a consequence of the high col- 
lection efficiency of solid-state energy- 
dispersion spectrometers (about 80 per- 
cent), electron-microprobe analysis may 
be accomplished with sufficient count- 
ing statistics at lower incident electron 
beam currents than is possible with a 
crystal spectrometer. Lower currents 
may enable analysis of samples that 
are altered by electron beams of higher 
current densities. 
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Table 1. Superconducting, antiferromagnetic, 
and ferromagnetic transitions of hexa- and 
dodecaborides. X-ray diffraction data for 
hexaborides sometimes showed small amounts 
of tetra- and dodecaborides. For T.s (super- 
conductivity), sharp transitions S 0.1?K wide 
were observed at 16 kc/sec unless otherwise 
indicated. Neel transitions identified by the 
abrupt decrease in resistivity as discussed in 
the text are given in column R; those identi- 
fied by an abrupt decrease in susceptibility 
(measured by an inductive method at 25 cycle 
sec-1) are given in column X. 

Com- Tsc TNeel (OK) Tcurie 
pound (?K) R X (?K) 

ScB,, 0.39 
YB6 6.5-7.1 
YBt?* 4.7 
ZrB1i 5.82 
LaB,* 5.7 
CeB, 3.0 3.0 
PrB, 7 
NdB, 8.6 8.6 
EuB6 8 
GdB, 17.6 17.5 
TbB, 23 >3 
DyB, 21.5 21 
HoB, 9 
HoBla 6.5 
ErB2, 6.5 
TmB, 4.2 
LuB,, 0.48 
ThB, 0.74 
* Incomplete superconductive transitions indi- 
cate that not all the sample was superconduct- 
ing. 
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most transition-metal compounds. There 
is even a slight resemblance between the 
the antiferromagnetic and the supercon- 
ducting transitions. At or below the 
Neel point, the electric resistivity drops 
abruptly, a feature which recently, in 
the case of NdB6, may have been mis- 
taken for superconductivity itself (1). 
Antiferromagnetism and a not quite so 
drastic drop in resistivity have been 
found previously for GdB6 by Coles (2). 
We have found similar behavior for all 

magnetic rare-earth compounds investi- 
gated except the EuB6 (Table 1), where- 
as all corresponding nonmagnetic rare- 
earth compounds become superconduct- 
ing. The nonmagnetic tetraborides, 
which are equally good metallic con- 
ductors, showed no superconducting 
transition above 0.35?K. 

Specific heat data have been ob- 
tained for both YB6 and ZrB12. The 

expected anomalies associated with the 
transition into the superconducting 
state were observed for both com- 

pounds. The very sharp transition ob- 
served for ZrB12 is shown in Fig. 1. 
The extrapolated electronic heat ca- 

pacity coefficient per mole of ZrB12 
(13.55 X 10-4 calories mole-1 deg-2) 
is almost exactly twice that found for 
one mole of YB6. Consequently, both 

compounds have the same value of 

slightly over 1 X 10-4 calories deg-2 
per gram atom of boron. 

The compounds described are, from 
an atomistic point of view, mostly 
boron. It was therefore tempting to con- 
sider the above results as indicative of 
the behavior of a hypothetical cubic 
boron lattice which is metallic. The 
aforementioned properties exist only 
when we have three-dimensional cubic 

arrays, which are characteristic of the 
hexa- and dodecaborides. 

The tetraborides being tetragonal are 

structurally intermediate between the 
two-dimensional MB2 and the three- 
dimensional MB6 arrangement (3). They 
no longer show any superconducting 
transitions a,bove 0.35?K. The absence 
of superconducting transitions in one- 
and two-dimensional lattices has been 

pointed out earlier for covalent borides 
(4) and the graphite intercalation com- 
pounds (5). The existence of supercon- 
ductivity found only in the hexa- and 
dodecaborides again confirms the valid- 

ity of the empirical result that supercon- 
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ductivity found only in the hexa- and 
dodecaborides again confirms the valid- 

ity of the empirical result that supercon- 
ductivity exists only in three-dimen- 
sional structures. 

A certain formal analogy exists be- 
tween these borides and the beryllides. 
The formulas of the latter range from 
MBe12 to MBe22, M being almost any 
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Fig. 1. Specific heat as a function of 
temperature for ZrBi2. 

transition element. Most of the MBe22 
compounds, if not all, also exhibit su- 
perconductivity (6), which might be 
considered typical for the Ibody-centered 
cubic phase of beryllium (7). The elec- 
tronic specific heat of these Be com- 
pounds is very low and in the order of 
0.1 X 10-4 calories per gram atom of 
Be, whereas for the hexa, and dodec- 
aborides it is an order of magnitude 
higher. Thus we conclude that cubic 
metallic boron, should it ever come into 
existence, would have an appreciable 
electronic specific heat. 
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