
transformation in animal cells. There 
are concrete indications, however, that 
in spite of their short half-life, proteins 
can act as carriers, as precursors of 
active agents, and as regulators of meta- 
bolic functions in host cells. They may 
also be important in the control of 
growth and differentiation. These func- 
tions of exogenous proteins are still 
largely unexplored. 
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Are "Infinity Machines" Paradoxical? 

Can processes involving an infinite sequence of 
operations or "acts" be completed in a finite time? 
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Let us begin with a statement of the 
problem. 

1) Consider 'a hypothetical machine, 
to be called the "r-machine," which 
prints all the digits 3.1415926535 . . . 
constituting the infinite decimal repre- 
sentation of Xr in such manner that 
the first digit is printed in ?/2 minute, 
the second in /4 minute, the third in 
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1/8 minute, and so on. We disregard 
here the question of whether an infinite 
time might not be required for the 
more complicated process by which 
this progression of digits might first 
have been computed seriatim, via, say, 
Archimedes's method of exhaustion for 
determining the area of -a unit circle. 
It suffices for our purposes that a 
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progression of digits is to be printed 
as described, and, if necessary, these 
digits may be any digits whatever, pro- 
vided that there is a denumerable in- 
finity of them. Furthermore these XO 
numerals might all have been inserted 
simultaneously into the printing press 
in a spatial arrangement discussed be- 
low. I refer here to any such process 
as "the Xr printing." And our problem 
is to determine the conditions, if any, 
under which the Xr printing could be 
completed in I minute. 

2) Let a hypothetical mechanical de- 
vice capable of reciting the sequence 
of natural numbers n = 1, 2, 3, . . . 
depart from the leftmost point 1 and 
move continuously to the right through 
a unit interval in 1 minute to the point 
0. Now focus on the progression of 
points 1/n (where n = 1, 2, 3, . . .) 
within that interval, a progression 
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which contains the point 1 but not the 
point 0. And suppose that the device 

might perform recitations as follows: 
for every one of these points 1/n 
(where n = 1, 2, 3, .. .), when reaching 
that point it begins to recite the num- 
ber n and completes the recitation of 
n by the time it arrives at the next 
point in the progression. Thus, for 
every natural number n, the device 
takes (l/n) - [1/(n + 1)] of a 
minute to complete its recitation. It 
does not, however, use the English 
name sounds for the natural numbers; 
instead it uses a sequence of names 
whose successive lengths are governed 
by a restriction discussed below. I refer 
to this traveling number-reciting device 
as "the Peano machine," in honor of 
the man who axiomatized the theory 
of natural numbers. Our problem is 
this: Will the prescribed names of all 
the natural numbers have been recited 
when the Peano machine reaches the 
point 0 after 1 minute? 

3) There are reading lamps equipped 
with buttons which, if pressed, switch 
the lamp on when it is off and switch it 
off when it is on. If the lamp is off and 
the button is pressed an odd number 
of times, the lamp will be on, but if 
the button is pressed an even number 
of times, the lamp will be off. Let the 
lamp be off, and now suppose that the 
first jab of the button requires /2 min- 
ute; the second, 1/4 minute; and so 
on. Our problem is this: Under what 
conditions, if any, can such jabbing 
of the button switch the lamp on and 
off Ko times within the finite time of 
1 minute? Since J. F. Thomson intro- 
duced the putative process of these 
KO on-off lamp switchings into the lit- 
erature (1), I refer to it as "the Thom- 
son process." 

4) A unit space interval includes 
the infinite geometric series of non- 

overlapping subintervals 
1 1 1 111, .... 
248 

Any infinite progression of intervals 
which converge to zero geometrically 
will here be called a "Z-sequence." 
This designation is intended to honor 
the Greek philosopher Zeno of Elea. 
Zeno's celebrated paradoxes lof about 
2500 years ago have haunted modern 
mathematical kinematics. For one of 
the insistent questions posed by his 
so-called Dichotomy paradox was the 

following: How can the completion of 
a runner's traversal of the unending 
Z-sequence be temporally intelligible? 
To deal with the temporal intelligibility 
of the mathematical apparatus of mod- 
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ern kinematics, we shall consider the 
issue of completing each of two proc- 
esses as follows: 

a) The traversal of the Z-sequence 
in unit time by a runner who runs 
continuously at uniform unit velocity. 
This runner will traverse the first Z- 
interval in 1/2 unit of time, the second 
in /4 unit of time, and so on ad in- 
finitum. I refer to this process as the 
"legato Z-run." 

b) The traversal of the Z-sequence 
in unit time by a runner who runs 
discontinuously as follows: he takes 1/4 

unit of time to traverse the first Z- 
interval of length 12 and rests for an 
equal amount of time; then he takes 
1/8 unit of time to traverse the second 
Z-interval of length 1/4 and rests for an 
equal amount of time; and so on ad 
infinitum. I refer to the latter process 
as the "staccato Z-run." 

In regard to the legato motion, Zeno 
asks: How can the runner's !comple- 
tion of such a Z-run possibly be tem- 
porally intelligible if its completion re- 
quires the elapsing of a progression of 
temporal subintervals which is endless 
and whose durations are 1/2" (n = 1, 
2, 3, . . .)? We can raise his question 
as well about our staccato Z-runner 
who is required to traverse each Z- 
interval in half the time required by 
the legato runner and then to wait 
for the latter to catch up with him 
before traversing the next Z-interval. 
Thus, if one imagines that the two run- 
ners depart simultaneously and run 
parallel to 'each other on essentially 
the same race course, then we can 
ask: Do they arrive simultaneously at 
their final destination after a finite 
time? These questions cannot nowa- 
days all be dismissed as mere mathe- 
matical anachronisms, born of failure 
to understand the modern arithmetical 

theory of convergent infinite series. 
For they have been asked by eminent 
contemporary mathematical physicists. 
Thus, referring to "Zeno's well-known 

paradox of the race between Achilles 
and the tortoise," Hermann Weyl writes 
(2, pp. 41-42): 

The remark that the successive partial 
sums 

-o (n=t 1,2,3,...) 

of the series 

1 1 1 
2 2 23 

do not increase beyond all bounds but 
converge to 1, by which one nowadays 
thinks to dispose of the paradox, is certain- 

ly relevant and elucidating. Yet, if the seg- 
ment of length 1 really consists of infinite- 
ly many subsegments of lengths /2, 14, 
1/ . .. ,as of "chopped-off" wholes, then 
it is incompatible with the character of the 
infinite as the "incompletable" that Achil- 
les should have been able to traverse them 
all. If one admits this possibility, then 
there is no reason why a machine should 
not be capable of completing an infinite 
sequence of distinct acts of decision with- 
in a finite amount of time; say, by sup- 
plying the first result after /2 minute, the 
second after another 1/4 minute, the third 
1/8 minute later than the second, etc. In 
this way it would be possible, provided 
the receptive power of the brain would 
function similarly, to achieve a traversal 
of all natural numbers and thereby a sure 
yes-or-no decision regarding any existential 
question about natural numbers! 

5) Modern kinematical theories as- 
sume that between any two instants 
of time there is at least one other, 
and that between any two points of 
space there is at least one other. Any 
class of elements ordered by this kind 
of betweenness is said to be "dense." 
It is thus logically possible that di- 
verse classes of elements are each dense 
with respect to their particular order- 
ing relations of betweenness. And in 
the case of any one class of elements 
and a specified betweenness relation, 
we can ask, therefore, whether the class 
constitutes a dense system. 

For any given instant of a dense 
temporal order, there does not exist 
any immediately next instant either be- 
fore it or after it, since any two in- 
stants are separated by others. Thus 
for any two instants t1 and t, there 
there are infinitely many other instants 
between them. This dense kind of be- 
tweenness is to be contrasted with the 
betweenness associated with a discrete 
series. In a discrete series like 1, 2, 3, 

., the elements are ordered con- 
secutively-that is, with one immediate- 
ly next to the other, which is either 
an immediate successor or an immedi- 
ate predecessor. And if there are any 
elements between two others in a dis- 
crete series, their interposition is con- 
secutive. Newtonian physics, relativity 
theory, and standard quantum mechan- 
ics all assume that spatial and tem- 
poral betweenness are both dense as 
opposed to discrete. Standard quantum 
theory has "discretized" or quantized 
some physical properties whose counter- 
parts in classical physics were mathe- 
matically continuous. But standard 
quantum theory has not quantized space 
or time, and the time of that theory is 
dense. For in standard quantum the- 
ory, every point of continuous physi- 
cal space is a potential sharply defined 
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position of, say, an electron, and, sep- 
arately, every instant of a continuous 
time is potentially the time of a physi- 
cal event. And this assertion of the 
continuity of space and time fully al- 
lows that theory to repudiate the well- 
defined particle trajectories of Newto- 
nian or relativistic mechanics. 

By assuming that physical time and 
space are each a linear mathematical 
continuum of elements, the modern 
kinematical theories assert a time or 
space interval to be an actually infinite 
dense set of punctal elements. Thus 
the spatial and temporal intervals (con- 
tinua) of modern kinematics are actual- 
ly infinite sets of punctal elements in 
the sense of Georg Cantor, not merely 
potentially infinite aggregates in Aris- 
totle's sense; Aristotie's aggregates are 
infinite merely in the sense that their 
members are infinitely divisible. Hence, 
in modern kinematics the members lof 
an infinite set of nonoverlapping sub- 
intervals of an interval of time or space 
cannot be regarded as first having to 
be generated by hypothetical division 
operations on the total interval. 

In the wake of Zeno, such scientist- 
philosophers as A. N. Whitehead and 
William James denied that the temporal 
order can intelligibly be dense. Inviting 
attention to the perceived relations of 
temporal order among events as they 
are actualiy happening, they claimed 
that this o.rder is discrete and exhibits 
nextness or constcutivity as opposed 
to denseness. We aW told that, ordinal- 

ly, time as perceptually 'experienced by 
us is the order of the actual coming 
into being of events, and thus the order 
of the successive nows of awareness. 

Note, we are told, the content of our 

perceptual awareness of a runner's mo- 
tion as it is taking place, and attend 
to the temporal order in which it is 

perceived as actually happening. Then 
our actual experience of its happening 
-as distinct from our retrospective 
awareness of the entire motion-has 
the following feature: there is a 
first event of the motion, constituted 
by the runner's presence at his point 
of departure; a temporally next event 

right after the departure event; consec- 

utively ordered temporally intermediate 
events; a temporally next-to-the-last 
event right before the runner arrives 
at his destination; and the terminal 
event of the motion, constituted by his 
arrival there. Clearly, we are told, the 
nextness of before and after character- 
istic of actual happening is logically 
incompatible with a dense temporal or- 
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der. For in what sense, asks James, can 
the events of the motion intelligibly 
be said to succeed one another temporal- 
ly if the initial instant of the motion 
is not followed by any immediately 
later next instant because a dense in- 
finity of instants must first occur be- 
tween that initial instant and any later 
one, however close? And he replied 
that the actual elapsing of ongoing 
time cannot intelligibly be dense. Hence 
James and Whitehead contend that, if 
there is to be a serial order of non- 
simultaneous events which is temporal 
at all, that iorder of actual happening 
must be consecutive in the manner of 
a discrete sequence. 

Our problem is, therefore, to see 
whether a dense temporal order of 

punctal physical events is indeed para- 
doxical, as James and Whitehead claim 
it is. When dealing with this ordinal 

question, we shall not be concerned 
with the following metrical challenge 
inherent in Zeno's different paradox of 
extension: How can chronometry and 
geometry devise physically reasonable 
rules for adding durations and lengths 
which would allow an extended inter- 
val to consist of unextended instants 
or points? Specifically, Zeno rejected, 
as physically paradoxical, additivity 
rules for length and duration which per- 
mit kinematical theory to assert each 
of the following two assumptions in a 

formally consistent way: (i) a line seg- 
ment of physical space, whose length is 
positive, is a linear mathematical con- 
tinuum of points, each of which is of 
length zero; (ii) the time interval cor- 
responding to a physical process of 
positive duration is a linear mathe- 
matical continuum of instants, each of 
which is of zero duration. Zeno's al- 

legation of such a paradox of extension 
was endorsed by the contemporary 
Nobel-laureate physicist P. W. Bridg- 
man, who wrote (3): 

With regard to the paradoxes of Zeno ... 
if I literally thought of a line as consisting 
of an assemblage of points of zero length 
and of an interval of time as the sum of 
moments without duration, paradox would 
then present itself. 

Limitations of space prevent my pre- 
senting here a vindication of kinematics 
vis-a-vis this particular charge of para- 
dox. I must therefore refer the reader 
to the detailed statement given in my 
recent book on the topic of this article 
(4). 

The various allegations of paradox 
made concerning the "infinity ma- 

chines" and the runners mentioned 
above pertain to the distinctively kine- 
matical aspects of the specified proc- 
esses. Hence their chemical, electrical, 
physiological, or other feasibility is not 
at issue, unless it has a bearing on the 
assessment of their possibility from the 
standpoint of kinematics. 

I discuss the legato motion first. Here 
it is taken for granted that the runner 
can indeed traverse a unit space inter- 
val in unit time, as allowed by kine- 
matic theory. But the allegation of 
paradox is the charge that, by affirm- 
ing a dense temporal order, this very 
theory also permits the deduction that 
the runner cannot reach his destination 
in a finite time. In this way, kinematic 
theory is charged with entailing the 
impossibility of the processes which it 
purports to describe. 

The Legato Motion 

Zeno calls attention to the fact that, 
if the runner is to traverse a unit 
space interval in unit time, he must, 
among other things, successively tra- 
verse in corresponding times the pro- 
gression of nonoverlapping spatial sub- 
intervals whose lengths are given by the 
numbers 

1 1, . . , 1 ,... 
2 4 8 2'~ 

(n = 1, 2, 3, ...). 
How then, Zeno asks, can this process 
possibly be completed by the runner in 
a finite time, if its completion requires 
the elapsing of a progression of tem- 
poral subintervals which is endless as a 
consequence of the denseness postulate, 
and whose durations are 1/2n (n 1, 
2, 3, . ..)? 

It will be useful to adopt the term- 
inology used by Vlastos (5) and to re- 
fer to the traversal of any of the spatial 
subintervals of our Z-sequence as "mak- 
ing a Z-run." Vlastos notes that the 
term run, as commonly used, individ- 
uates uniquely the physical action to 
which it applies, much as heartbeat 
does. And he points out that in this 
sense of "run," the runner's traversal 
of the Z-sequence could only be de- 
scribed as a single run and not as hav- 
ing involved a denumerable infinity of 
Z-runs. But clearly, to traverse the 
unit interval in one smooth and unin- 
terrupted "run" in the ordinary sense, 
the runner must-among other things 
-traverse all the members of the Z- 
sequence and, in the latter sense, make 

0O Z-"runs." To distinguish between 
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these two quite different uses of the 
noun run, Vlastos writes "runa" for 
the single motion which we can per- 
ceive with our unaided senses in daily 
life and "runb" for the kind relevant 
to the Z-sequence of kinematics. 

Human awareness of time exhibits 
a positive threshold or minimum. This 
fact can now be seen to have a con- 
sequence of fundamental relevance to 
the appraisal of Zeno's argument. For 
it entails the conclusion that none of 
the infinitely many temporal subinter- 
vals in the progression whose magni- 
tude is less than the human minimum 
perceptibilium can be experienced as 
elapsing in a way that does metrical 
justice to its actual duration. To suc- 
ceed, the attempted individual contem- 
plation of all the subintervals would 
require a denumerable infinity of men- 
tal acts, each of which requires or ex- 
ceeds a positive minimum duration. 
Instead of experiencing these subinter- 
vals as elapsing in a metrically faithful 
way, we gain 'our metrical impression 
of duration in this context from the 
time needed by our mental acts of con- 
templation and not from the respective 
duration-numbers which we associate 
intellectually with the contemplated sub- 
intervals when performing these mental 
acts! And the resulting compelling feel- 
ing that an infinite time is actually 
needed to accomplish the traversal in 
turn gives rise to the impression that 
this paradoxical result is deducible from 
the theory of motion. Specifically, the 
existence of a duration-threshold of 
time awareness guarantees that there is 
a positive lower bound on the dura- 
tion of any runa. And this fact enters 
into 'several of the following fallacies 
of Zeno's Dichotomy paradox. 

1) Zeno's claim that the progression 
of Z-runb's requires an infinite future 
time is made plausible by a tacit ap- 
peal to our awareness that K0 runa's 
would indeed last forever, because there 
is a positive lower bound on the dura- 
tion of any runa. The threshold govern- 
ing our acts of awareness likewise com- 
pels the feeling that, after the first 
instant, a unique next event must oc- 
cur in the motion and that there must 
be a unique next-to-the-last event that 
occurs before the final instant of the 
motion, if there is to be a final in- 
stant at all. But the one-;by-one con- 
templation which Zeno invites is not 
metrically faithful to the actual physi- 
cal durations of the contemplated sub- 
intervals, which converge to zero by 
decreasing geometrically. And Zeno il- 
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licitly trades on the fact that our intui- 
tive time awareness rightly boggles at 
experiencing each of K0 subintervals 
of time as elapsing individually. But, 
justified though it is, this boggling can- 
not detract from the fact that any and 

every temporal subinterval of the mo- 
tion is over by the end of one unit 
of time: for every n, the sum Sn of 
the first n terms of the geometric series 
of duration numbers 

1, 1,1, . . . 1 
2 4 8 2T1 

is given by 

S -= I1-- ( = 1, 2, 3, .. .), 

which is less than 1. It follows that 
both distributively and collectively, all 
K0 temporal subintervals of the mo- 
tion elapse within one unit of time. 
The justification for this conclusion 
becomes further apparent when one be- 
comes cognizant of the next error, by 
which Zeno buttresses his conclusion 
that the runner would never reach his 
destination. 

2) With respect to the relation of 
temporal precedence, the set compris- 
ing the temporal subintervals of the 
progression and the instant of the run- 
ner's arrival at his point of destina- 
tion has the form of an infinite progres- 
sion followed by a last element and is 
said to be of ordinal type o + 1. 
Furthermore, the instant of the run- 
ner's arrival at his destination point 
1 does not belong to any of the sub- 
intervals of the progression. Thus, the 
closed time interval required by the 
runner's total motion consists of all 
the instants belonging to any of the 
subintervals of the progression and of 
the instant of arrival at point 1. By fail- 
ing to include the instant of arrival, 
the membership of the subintervals of 
the progression fails to exhaust the en- 
tire membership of the closed time 
interval required by the complete mo- 
tion. 

Zeno illicitly exploits the fact that it 
is logically impossible to find the termi- 
nal instant of the motion in any of 
the subintervals of the unending pro- 
gression. For he appeals to this fact 
as lending further credence to his claim 
that the union of the subintervals of 
the progression is of infinite duration. 
But the logical impossibility of finding 
the terminal instant in any of the sub- 
intervals forming the unending progres- 
sion means no more than that this in- 
stant is not to be found in a time 
interval from which it has been ex- 

cluded and which has been left half 
open by its exclusion; the half-open- 
ness of the resulting time interval does 
not show that the union of the sub- 
intervals must be of infinite duration 

just because it has no terminal instant 
and just because the infinite progres- 
sion of subintervals has no last mem- 
ber. For the terminal instant is the 
earliest instant following every instant 

belonging to any subinterval of the un- 

ending progression, while the durations 
of these subintervals suitably converge 
to zero. The nonexistence in the pro- 
gression of a last subinterval during 
which the motion would be completed 
does not preclude the existence of an 
instant later than all the subintervals 
which is the last instant of the motion. 

This state of affairs is expressed arith- 

metically in the following way: 
1) If the runner departs at t = 0, 

then, corresponding to the nonexistence 
of a last temporal subinterval of the 
motion in the progression, the respec- 
tive times by which he has traversed 
the successive Z-intervals are given by 
the infinite sequence 

1 3 7 15 31 2' 
- 1 

2 4 8 16 32 2n 
(n=l, 2, 3, ...). 

2) Although the number 1 is not a 
member of this infinite sequence of 
time numbers, the arithmetic limit of 
this infinite sequence on the number 
axis is constituted by the number 1, 
which is the time coordinate of the 
last instant of the motion and repre- 
sents the total duration of the union 
of the subintervals belonging to the 
progression. 

3) The runner traverses ever shorter 
subintervals of the unit race course 
in proportionately ever shorter subinter- 
vals of time, thereby traveling at con- 
stant speed. 

What then are we to think of the 

charge that the arithmetic theory of 
limits has been lifted uncritically out 
of the context of its legitimate applica- 
tion to physical space and adduced ir- 
relevantly in an effort to refute Zeno's 
allegations of temporal paradox? The 
considerations of this section show that 
the mathematical apparatus of the the- 
ory of limits is ordinally and metrically 
no less appropriate to physical time 
than it is to physical space. Note that 
I have not invoked the arithmetic theo- 
ry of limits, as such, to dismiss the 
allegation that kinematical theory en- 
tails temporal paradoxes. Instead, my 
contention has been thiat the ordnal 
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and metrical structure of physical time 
provides justification for applying that 
arithmetical theory, and that Zeno's spe- 
cific deductions 'of metrical contradic- 
tions in the Dichotomy are each vitiated 
by fallacies which I am engaged in 
pointing out. 

The highly misleading role played by 
Zeno's one-by-one contemplation of the 
members of his progression becomes 
conspicuous when one notes the fol- 
lowing facts. It would even take us 
forever to contemplate, one by one, the 

progression of durationless instants 
which divide one temporal subinterval 
from the next, and yet the durational 
measure of this progression of instants 
is zero! By the same token, the fact 
that our contemplation of the Ko subin- 
tervals would last forever is not a basis 
for concluding that the union of the 
progression of these subintervals would 
be 'of infinite duration. In summary, 
Zeno would have us infer that the 
runner can never reach his destination 
just because (i) we could never con- 

template, one by one, all the subinter- 
vals of the progression, for want of 
time, and (ii), for purely logical rea- 
sons, 'we could never find the terminal 
instant of the motion in any subinter- 
val of which it is not a member, and 
it is not a member of any of the sub- 
intervals of the progression. But it is 
altogether fallacious to infer Zeno's con- 
clusion from these two premises. 

The recent literature on Zeno con- 
tinues to provide illustrations of the 
intellectual havoc that has resulted from 
an irrelevant, though tacit, appeal to 
the fact that there is a positive lower 
bound on the duration of any single 
mental act of ours, such as conscious 
counting. Thus, G. J. Whitrow (6) 
seems to have engaged in precisely 
such 'an unwitting appeal in his en- 
deavor to show that the denseness 
which we attribute to finite intervals 
of space cannot similarly be attributed 
to physical time without thereby gen- 
erating logical antinomies. After stat- 
ing (6, p. 148) that "we must not as- 
sume that . .. in time, any infinite 
sequence of operations can be per- 
formed," Whitrow considers the con- 
sequences fof assuming that the runner 
(that is, Achilles) passes through the 
entire progression of positions envisaged 
by Zeno as the respective termini of 
his subintervals. Whitrow invites us to 
assume that, in so doing, the runner 
would number all these positions con- 
secutively, and he concludes (6, p. 148) 
that then the runner's task would in- 
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volve exhausting "the infinite set of 
positive integers by counting." In this 
way Whitrow misidentifies the metrical 
features of the process of (conscious) 
counting in English with those of tra- 
versing Zeno's progression of points in 
a finite interval, in a manner akin to 
Zeno's illicit appeal to the eternity of 
one-by-one contemplation in the Dich- 
otomy. 

The Staccato Motion 

The staccato runner at no time lags 
behind his legato colleague during the 
closed unit interval but is either ahead 
of him or abreast of him. While run- 
ning within each of the Z-intervals, 
the staccato runner's average velocity 
is twice that of his legato colleague, 
but his overall average velocity for 
the total interval is equal to his col- 
league's velocity and is less than the 
velocity of light in a vacuum. It fol- 
lows that if the legato runner reaches 
his destination in 1 unit of time after 
traversing the Z-sequence, then so also 
does the staccato runner. And this con- 
clusion has the following important con- 
sequence: Given that the pauses separat- 
ing the individual traversals made by 
the staccato runner form a geometric 
progression whose terms converge to 
zero, it is immaterial to the traversabil- 
ity of the total unit interval in a finite 
time that the process of traversal con- 
sists of Ko motions separated by pauses 
of rest (staccato run) instead of being 
one uninterrupted motion which can 
be analyzed into an infinite number of 
submotions (legato run). And if we wish 
to call the staccato runner's execution 
of the K0 separate motions "doing in- 
finitely many things," then his perform- 
ance shows that infinitely many things 
can be done in a finite time (7). What 
could reasonably be expected here in 
the way of a "proof" that the staccato 
run is kinematically possible is the 
following: A demonstration that, given 
the kinematical principles of the theory 
and the boundary conditions, the theory 
entails the finitude of the total dura- 
tion of the staccato run. For the al- 
legation that that run was impossible 
was based on its allegedly infinite dura- 
tion. Thus, I am engaged in giving 
a proof of the physical possibility of 
the staccato run. Of course, if the 
pauses between the individual traver- 
sals of the staccato run were all equal, 
then this run could not 'be carried out 
in a finite time, no matter how small 

each of the equal pauses might be. But 
the introduction of the assumption of 
equal pauses is clearly contrary to the 
stated condition of geometrically de- 
creasing pauses. No wonder, therefore, 
that a surreptitious appeal to the as- 
sumption of equal pauses insinuates 
the actual deducibility of a paradox 
from the theory. 

To obviate some objections to my 
contention that it is physically possible 
kinematically for the staccato run to 
be consummated in a finite time, I call 
attention to several points, as follows. 

1) I was careful not to require my 
staccato runner to plant a flag at each 
of his Z-stops during the times when 
he suspends his motion to permit his 
legato colleague to catch up with him. 
For the erection of a flag at each of 
the K0 Z-stops would presumably re- 
quire him to translate his own limbs 
and rotate the flag each time through 
a minimum positive distance, however 
small. And in that case the staccato 
runner would have to perform K, 
equal spatial displacements in a finite 
time and thereby effect a spatially in- 
finite total displacement of his own 
limbs and of the flags, in the follow- 
ing manner. The successive vertical ve- 
locities of his limbs required to plant 
the flags consecutively would increase 
boundlessly (though not monotonically!) 
with time up to the instant at which 
he comes to rest at his destination. But 
such a motion has two kinematically 
objectionable features: (i) at the instant 
t = 1 of arrival at the destination point 
P, the motion violates the requirement 
that the position of a body be a con- 
tinuous function of the time, since the 
vertical position does not approach any 
limit as t -> 1, and, a fortiori, the 
vertical position does not approach 
the point P as a limit as t -> 1; (ii) 
the fluctuating velocity function has an 
instant of infinite discontinuity (at the 
time t 1), since the plot of the run- 
ner's vertical position against time is a 
function of unbounded variation in the 
time interval (0, 1) and the velocity 
function is unbounded in every neigh- 
borhood of the terminal instant t 1 
(8). 

By contrast, at t = 1 the staccato 
runner's horizontal position is a con- 
tinuous function of time, and his hori- 
zontal velocities fluctuate only between 
two fixed values 0 and k. His horizontal 
accelerations do increase and decrease 
boundlessly as t -> 1, in the sense 
that the same velocity change takes 
place in ever shorter times. But this 
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can reasonably be regarded as kine- 

matically innocuous. For the horizontal 
velocity function has an instant ,of only 
finite discontinuity at t = 1 (just as the 
graph of a step function has points 
of only finite discontinuity), while the 
horizontal position is indeed a con- 
tinuous function of the time. That there 
are physically reasonable cases in which 
the position x of a particle varies con- 
tinuously with time t while either the 
velocity or the acceleration does not, 
emerges from the following 'different 
case of temporally "semi-parabolic" mo- 
tion along the x-axis: x = t2 for t > 0, 
and x = - t2 for t < 0. Here both 
the position and the velocity functions 
are continuous at t = 0, but the ac- 
celeration changes discontinuously from 
-2 to +2 at that instant. 

It might 'be asked why I gave kine- 
matic sanction to an infinite discontin- 
uity in the horizontal acceleration at 
t= 1 after having objected to the infinite 
discontinuity in the vertical velocities re- 
quired to plant the flags. To this I re- 
ply: The former is here associated with 
a continuous time-dependence of the 
horizontal position, whereas the latter 
is a consequence of a discontinuous 
change in the vertical position. Thus, 
it may be that a given kind of discon- 
tinuity is kinematically permissible in 
the case of a higher-order derivative 
(for example, acceleration) but nlot in 
the case of the corresponding lower- 
order derivative (for example, velocity). 

2) In view of the thresholds which 
govern the physiological reaction times 
of the staccato runner and his times 
of conscilous execution of a set of in- 
structions, it is clear that this runner 
cannot be "programmed" to perform 
the staccato run in accord with the re- 
auired metrical specifications when the 
Z-intervals and the corresponding times 
of traversal become small enough to 
fall below his thresholds. But this fact 
does not vitiate my contention that, in 
principle, kinematically the staccato 
run, as described, is physically possible. 
For kinematic theory allows us to as- 
sume that the staccato runner's separate 
motions have the prescribed metrical 
properties. 

3) There may, of course, be specifi- 
cally dynamical-as distinct from kine- 
matical-difficulties in effecting the in- 
finitude of horizontal accelerations and 
decelerations required by the runner's 
alternate starting and stopping. Thus, 
if we oversimplify the Newtonian treat- 
ment and consider the succession of 
accelerations of the body of fixed mass 
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m from rest to a velocity of two 
units, then Newton's Second Law, 
F = m (dv/dt), tells us that 

F At = m Av. 

But the successive times At,, (n = 1, 2, 
3,.. .) available for imparting the same 
velocity change Av to the constant 
mass m converge to zero as the Z- 
intervals decrease. Hence the successive 
force values Fn have to become pro- 
portionately indefinitely large to assure 
the constancy of the product F,,At,,. 
And if we assume that the successive 
forces are given by F,, = m a, and act 
through distances Ax,, given by Ax,, 
= (1/2) a,,At,,2, then we have 

F 2 - 1 F.^AXx, = -Fnl,,a,,A2 =-2 (F,,At,,.). 2 2mn 

But we saw that all the nonzero prod- 
ucts F,,At, are equal. Hence each of 
the KO products F,Ax,, has the same 
nonzero value. But this means that the 
total energy (work) expended by the 
runner in imparting the same finite 
velocity change Av to his body Ko 
times is infinite. Thus, the runner would 
have required an infinite store of ener- 
gy when he set out on his run. For 
he sustains Ko uncompensated losses 
of kinetic energy in the decelerations, 
and the total magnitude of these losses 
is infinite. 

Let us disregard these specifically 
dynamical difficulties but be mindful 
of ruling out any flag-planting or other 
marking processes that would require 
any discontinuous change in any com- 
ponent of the displacement of the run- 
ner's limbs. I believe I have shown 
that, in the absence of such changes, 
kinematically it is physically possible 
for the staccato runner to reach his 
destination as prescribed in a finite 
(unit) time. Indeed he can be held 
to have "marked" each end point of 
the progression of end points of the 
Z-intervals by the act of stopping at 
each one for the prescribed length of 
time while awaiting his legato colleague. 
If this waiting at the Z-stops may be 
considered a "marking" procedure, then 
my staccato runner's total motion con- 
stitutes an important counterexample 
to one of the theses recently put for- 
ward by C. S. Chihara as part of his 
interesting critical response to Weyl's 
comparison of the Z-run with the per- 
formance of an infinity machine. Chi- 
hara believes that, for logical reasons, 
the difference between Achilles's mere 
traversal of the interval and Achilles's 
marking of all the end points of the 

Z-intervals in the course of his jour- 
ney makes for the difference between 
the possibility of completing the run 
in a finite time and the requirement 
for an infinite time. He says (9): 

... to give a more intuitive characteriza- 
tion of the difference between Achilles' 
journey and Achilles' task of marking the 
end points, in the former case we start 
with the task and analyze it into an in- 
finite sequence of stages, whereas in the 
latter case we start with the stages and 
define the task as that of completing the 
infinite sequence of stages. To complete 
the journey, one must simply perform a 
task which can be analyzed ad infinitum, 
but to complete the task lof marking all 
the end points, one must really do an in- 
finite number of things. 

But as we saw, the staccato runner 
does "really do an infinite number of 
things" in what is kinematically a de- 
monstrably finite time. It would appear 
that here Chihara is mistaken as to the 
source of the difference between the 
possibility of completion in a finite 
time and the requirement for an infinite 
time. The staccato run is not one un- 
interrupted motion which can be mere- 
ly analyzed into an infinite number of 
submotions, as in the case of the legato 
run. Instead it consists of Ko motions 
separated by pauses, and yet kinemati- 
cally its completion in a finite time is 
physically possible under the stated 
conditions. 

The Pi-Machine 

In considering kinematically whether 
it is physically possible for the 7r-ma- 
chine to accomplish the 7r-printing in 
a finite time, I must immediately stipu- 
late that the heights from which the 
press descends to the paper to print 
the successive digits cannot be equal 
but must form a geometrically decreas- 
ing series converging to zero. In this 
way I can ensure that the spatial mag- 
nitude of the successive tasks does not 
remain the same while the time avail- 
able for performing them decreases to- 
ward zero. Like the runners, the 7r- 
machine is thereby called upon to move 
at only a consta,nt average speed by 
traversing ever smaller distances in pro- 
portionately ever smaller times. My rea- 
son for requiring the heights from 
which the press descends to converge 
to zero in a suitable fashion is appar- 
ent from the analysis given above of 
the flag-planting in the case of the 
staccato runner. If these heights did 
not converge to zero, the successive ve- 
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locities required for the printing would 
soon exceed the velocity of light and 
would vary with time in a manner 
that is kinematically objectionable even 
in the context of the Newtonian theory. 
Here, no less than in the case of the 
staccato runner, I ignore the dynamical 
problems of programming the 7r-ma- 
chine so that the successive spatially 
and temporally shorter descents of the 
press can be triggered as required. 

I require, furthermore, that the 
widths of the successive numerals to be 
printed converge to zero in such a 
way that all the Mo digits can be 
printed in a horizontal line on a finite 
strip of paper. In laying down this sec- 
ond requirement, I blithely ignore as 
kinematically irrelevant the blurring of 
the digits on the paper through smudg- 
ing of the ink when their widths be- 
come sufficiently small, not to speak 
of the need for ink droplets smaller 
in diameter than -an electron! 

Under the fundamental restriction 
of my first proviso, regarding the 
heights of descent, the 7r-printing no 
more requires an infinite time than 
the legato or the staccato runner does. 
And, given my second requirement, 
concerning the widths of the successive 
digits, the spatial array of the Ko digits 
no more requires an infinite space than 
does the unending progression of Z- 
intervals which collectively fit into the 
space of a finite unit interval. As long 
as the sequence 3.1415926535 . . . is 
printed so that the successive widths 
of the digits converge to zero in the 
manner of the Z-intervals, the question 
"What does this array look like at the 
right-hand end?" receives the same 
kind of answer that the corresponding 
question about the progression of Z- 
intervals receives. We must not make 
a misguided attempt to form a visual pic- 
ture of the open end of a finite, half- 
open :space interval, and we are aware 
that the metrically finite union of the 
Z-intervals is open at the right "end," 
as is the total space interval formed 
by the progression of horizontally shrink- 
ing digits. Although we cannot visually 
picture the nonexistence of a rightmost 
point, our very characterization of the 
openness of the right end shows that 
we clearly understand in ordinal terms 
"what that end looks like." Just as the 
interval constituted by the union of 
the Z-intervals can be closed at the 
right end by the addition of a right- 
m'ost (last) point, so also, of course, 
can the interval formed by the horizon- 
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tal cross section of the unending r- 
sequence. 

Precisely analogous remarks apply to 
the time intervals that correspond to 
(i) the process of traversing all the 
Z-intervals, and (ii) the process of print- 
ing all the digits of 7r as specified. 
In the case of Zeno's Z-runner, we 
naturally tend to include in the motion 
process the event of his arrival at his 
destination, where he first comes to 
rest: in so doing, we seem to be in- 
terested not only in those states of the 
legato runner in which his velocity is 
positive but also in the earliest of his 
states of rest. But in the case of the 

*r-printing process, there may be a tend- 
ency to include in the printing proc- 
ess only those states of the 7r-machine 
belonging to the printing motion and 
to exclude the earliest subsequent event 
which is not involved in the printing. 
Thus, by virtue of our decision on 
whether or not to include a terminal 
event in a given temporally finite proc- 
ess, the time interval corresponding to 
either of the Z-motion processes turns 
out to be closed at the later end, where- 
as the time interval corresponding to 
the *r-printing process does not. But 
the exercise of our option to omit 
from the time interval corresponding 
to the 7r-printing the earliest instant 
following all the instants during which 
the press is busy printing must not 
lead us to draw the fallacious infer- 
ence that no such earliest subsequent 
instant exists and that the 7r-printing 
cannot be completed within a finite 
time after its start. One might as well 
infer that the spatial interval constituted 
by the union of the unending progres- 
sion of Z-intervals must be spatially 
infinite! 

Let me assume that I am right in 
claiming that the completion of the 
kind of 7r-printing process which I 
have described is physically possible 
kinematically, no less than the com- 
pletion of the total staccato Z-run. Then 
my r-printing process constitutes a 
further counterexample to Chihara's 
claim, noted above, that, purely kine- 
matically, an infinite number of things 
cannot be done in a finite time. 

Suppose that I had not explicitly 
ruled out the equality of all the heights 
from which the printing press is to 
descend but had countenanced their 
equality. In that case, we can conclude 
the following from our discussion of 
the staccato runner. Quite apart from 
the fact that the speeds greater than 

the speed of light required by this 
equality would be incompatible with 
the special theory of relativity, these 
required speeds would be sufficient to 
ensure the kinematic impossibility, ac- 
cording to Newtonian physics, of the 
completion of the printing in a finite 
time. For the required unbounded 
speeds would not accord with the de- 
mand that the velocity function of a 
body may not have an instant of in- 
finite discontinuity, as we noted apropos 
of the flag-planting. Thus, unless Weyl 
can show that the successive spatial 
displacements (or "tasks") performed 
by a machine in calculating (not just 
printing!) seriatim the digits of 7r can, 
in principle, suitably converge to zero, 
my account of the r-machine does sus- 
tain the following conclusion reached 
by Chihara (9): Weyl was mistaken in 
claiming that only if an infinite se- 
quence of calculations can be completed 
in a finite time can Achilles traverse all 
the Z-intervals. 

The Peano Machine 

If we were to allow the use 'of the 
English-language names of the num- 
bers to be recited by the Peano ma- 
chine, then there would be a number 
beyond which the lengths of the names 
-each measured by the name's syl- 
lable content-would increase bound- 
lessly. And even if these name lengths 
remained the same, the "syllable-size" 
of the successive recitation tasks would 
remain the same while the time avail- 
able for their performance would de- 
crease indefinitely. To assure that the 
average speed of the mechanical "lips" 
engaged in the recitation could remain 
constant instead of having to increase 
boundlessly, we would require non- 
English names of the successive num- 
bers such that the successive distances 
traversed by the mechanical lips as they 
perform their recitations would decrease 
in proportion to the available time. 
It is quite unclear how distinctive 
names capable of being pronounced 
by the mechanical lips in accord with 
this stringent requirement could be gen- 
erated by a rule. 

Let us postpone this difficulty for 
the moment and turn from the modu- 
lating mechanical lips to the vibrating 
membrane of the mechanical voice. We 
note that each of the required Ko dis- 
tinct sound-names or noises requires 
at least one vibration of the voice mem- 
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brane. But the time available for the 
utterance of these successive noises con- 
verges to zero. Hence the frequency 
of the noises and also of the vibration 
of the membrane must increase indef- 
initely. It has been suggested to me 
by A. Janis that the ensuing denumer- 
able infinity of frequencies permits each 
natural number to be named by a 
sound of distinctive pitch. And it seems 
to me that such a pattern of noises 
constitutes an acceptable code language 
for numbers. 

The energy imparted to the air par- 
ticles by the vibrator is proportional 
to the square of the frequency and 
to the square of the amplitude. We 
can ensure, though, that the frequency 
pattern required by the total recitation 
does not necessitate the expenditure 
of an infinite amount of energy in a 
finite time. For although the frequen- 
cies of the membrane must increase 
indefinitely, we can require that the 
amplitudes ,of the successive vibrations 
of the total recitation decrease in such 
a way that the total energy expended 
is finite. 

Not only on these dynamical grounds 
is a decrease in the successive ampli- 
tudes important. For in order that the 
vibratory motion of the membrane be 
kinematically possible, the amplitudes 
of the vibrations corresponding to the 
successive noises must decrease and 
suitably converge to zero. Even if the 
membrane executed only one vibration 
for each noise, it would have to vibrate 
through an infinite total distance in a 
finite time if the amplitudes of all the 
KR noises were equal. 

The assumed fulfillment of this pro- 
viso regarding the decrease in the am- 
plitude does enable us to conclude that 
it is physically possible kinematically 
for the traveling Peano machine to 
complete the recitation in a finite time. 
Just as in the case of the ,r-machine, 
there is a tendency to think of the 
number-recitation process as not includ- 
ing the earliest of the Peano-machine 
states in which the machine is no longer 
engaged in reciting. This essentially 
classificatory decision on our part thus 
prevents the finite time interval re- 
quired for the total recitation from 
being closed at its later end. But I re- 
mind the reader of the caveat I issued 
on this point apropos of the r-ma- 
chine: It should not be inferred that a 
time interval must be metrically infinite 
just because it is ordinally open at 
either the later or the earlier "end." 
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Fig. 1. Schematic diagram of the circuitry 
of the Thomson lamp. 

The conditions which we had to im- 
pose to assure that the Peano machine 
can accomplish its XK recitations in a 
finite time make further apparent why 
it was necessary to object, in the case 
of the legato runner, to Whitrow's link- 
ing of Achilles's traversal of a progres- 
sion of points in a finite time with 
the expectation that Achilles would 
number them all by counting. I take 
it that the counting Whitrow had in 
mind would take the form of reciting 
all the natural numbers in English, or of 
performing the infinitude of threshold- 
governed mental acts of thinking of all 
of them seriatim. And we saw that 
either of these forms of counting would 
take forever. If we were to grant that 
Achilles can traverse the progression 
of points in a unit space interval only 
if he can thus count them all, then 
indeed Whitrow would be warranted 
in concluding that Achilles cannot ac- 
complish the traversal in 'a finite time. 
But the separate temporal analyses 
which I gave of the processes of tra- 
versal and of vocal or mental counting 
in English show that Whitrow has mis- 
identified the durational features of 
counting with those of Achilles's tra- 
versal of the progression of Z-points. 

The Thomson Lamp 

Let to be the initial instant t = 0, 
and tl the terminal instant t = 1 at 
which the denumerable infinity of on- 
off switchings are to have ;been com- 
pleted. 

Let us simplify our consideration of 
the kinematic feasibility of this process 
by disregarding the question of the fol- 
lowing electromagnetic possibility: the 
realizability of the conditions required 
for the emission of visible photons 
from the filament of the lamp bulb 
during each of RK geometrically decreas- 
ing "on"-periods prior to tl, and pos- 
sibly at tl and thereafter. Instead, let 
any state in which the lamp circuit 
is merely electrically closed qualify as 
an "on"-state of the lamp, while an 
"off"-state is one in which the circuit 
is thus broken or open. We can then 
confine our consideration to the kine- 
matics of the motions of the button 
or switch whose alternating states cor- 
respond to closed or open states of the 
circuit by virtue of the electrical coup- 
ling or decoupling between them. 

Let a button be equipped with an 
electrically conducting base which can 
close a circuit when fitted into the 
space between the exposed circuit ele- 
ments E1 and E2. And let the button 
be depressed through a fixed distance 
d to close the circuit every time the 
lamp is to be turned on, and pushed 
upward back to the starting position 
to break the circuit each of the K0 times 
the lamp is to be turned off. As is 
clear from the earlier discussion of the 
"infinity machines," if the button is to 
be at rest at time t1 or to be moving 
at that time with a particular finite 
velocity, even according to Newtonian 
principles this arrangement would in- 
volve a kinematically impossible infinite 
discontinuity in the time variation of 
the button's velocity, quite apart from 
requiring relativistically prohibited ve- 
locities greater than the velocity of 
light. 

There are certain conditions which 
must be satisfied by the switch (button) 
and the circuit elements to make Thom- 
son's process, as specified by him, kine- 
matically possible. And, as A. Janis 
has pointed out to me, these condi- 
tions are such that the state of the cir- 
cuit at time t1 is predictably closed. 
To see this, let us first recall the ear- 
lier discussion of the infinity machines. 
From this it is clear that the consecu- 
tive downward and upward jabs at the 
switching button, which alternately close 
and 'break the circuit, must produce 
displacements of the button whose 
lengths Ax are a suitably decreasing 
sequence converging to zero. And we 
must assume that there is no electrical 
'arcing or sparking across any space 
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gap Ax, however small, between the con- 
ducting button-base, on the one hand, 
and the exposed circuit ends El and E2 
on the other. For if there were electri- 
cal arcing for all Ax equal to or less 
than some minimum E, then the kine- 
matic requirement that Ax suitably 
converge to zero as t -> t1 would 
have the following result: there would 
be a time te before tt such that the 
circuit would be electrically closed for 
all instants t belonging to the interval 
tE < t < tl. And this result would ob- 
viously violate Thomson's requirement 
that the lamp is still to be switched 
off RK times during this time interval. 

At time to, when the lamp is off, 
let 12 be the initial vertical distance 
between the button base and the hori- 
zontal circuit-opening EBE2. Then af- 
ter the button has been depressed once 
from its initial position (with the base 
of the button at A) (Fig. 1) to close 
the circuit, let it be raised after each 
such depression not all the way to its 
initial position A but to intermediate 
points Al, A2, A: . . A,, ? . . whose 
respective distances Ax from E1E2 are 

8 32 128 22"n+1 

(n= 1, 2, 3, ...). 
Then the 0o circuit-closing jabs in- 
volve a sequence of downward dis- 
placements Ax 

, 1 1 . . 
2 8 32 2 2-+1' 

(n 0, 1, 2, 3 . ..). 

The corresponding sequence of avail- 
able time intervals At is 

1,1,1 1 
2 8 32 22~+ 

(n 0, 1, 2, 3, . . .). 
If all of the downward motions 

were to proceed at unit velocity, then 
the circuit would be closed for only 
an instant each time during these par- 
ticular time intervals. On the other 
hand, if only some fixed proper frac- 
tion 1/k of these available times At 
were devoted to the downward mo- 
tions, then the velocity of the button 
would have the same value k each 
time, thereby satisfying the Newtonian 
kinematic requirement of an upper 
bound during the time interval to < 
t < t1. And, if the downward motion 
were to start each time at the begin- 
ning of the time interval available for 
it, the lamp would be on at least for 
the sequence of time intervals 

At [1 - (1/k)] 
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-that is, at least during the time in- 
tervals 

2i 
I -- (n = 0, 1, 29 3 .). 

To conform to the requirements of the 
theory of relativity, the velocity k must 
be less than that of light in the units 
we are using. But even according to 
Newtonian principles the button veloc- 
ity would impermissibly increase bound- 
lessly, if only decreasing fractions 1/n 
(n - 1, 2, 3, . . . ), rather than a fixed 
proper fraction l/k, of the decreasing 
time intervals At were granted succes- 
sively for the downward motions in 
order to secure successive on-states of 
durations 

I (1- i-1)(n 
= 0, 1 29 39 ...). 

Turning to the K0 circuit-breaking 
jabs, we note that they involve a se- 
quence of decreasing upward displace- 
ments 

1 11 1 
8 32 128 22f'+1 

(n =l, 2, 3, . .). 
The corresponding sequence of decreas- 
ing time intervals At available for 
breaking the circuit by upward move- 
ment of the button is 

416 64 . . 
(n 1, 2, 3 . . .). 

Let 1/k be the particular fixed frac- 
tion of the available time interval At 
which is devoted each time to the but- 
ton's circuit-breaking motion. Clearly 
1/k < 1, and the button's upward 
velocity v is given by v = k/2. Under 
the relativistic restriction that v have 
values less than c, the velocity of light, 
we also have k < 2c, or (1/k) > 
(1/2c), so that 

1 1 

Suppose that 1/ k has some value 
in this interval other than 1, and let 
the upward motion terminate each time 
at the end of the time interval avail- 
able for it. Then the lamp will also 
be on during the following initial posi- 
tive subintervals of the intervals avail- 
able for the button's upward circuit- 
breaking motions 

- - 2+1 (n l 2, 3.). 

The state variable characterizing the 
lamp as either on or off is clearly a 
discrete variable, since it ranges over 
only two values rather than over a 

continuum of values. But we took a 
closed state of the circuit to be tanta- 
mount to an on-state of the lamp, while 
a broken state of the circuit is equiva- 
lent to an off-state of the lamp. And the 
positions of the button needed to close 
and break the circuit in the prescribed 
fashion must exhibit the kinematically 
required continuity. Therefore, Ax -- 
0 as t -> t1 and Ax = 0 at t = tl; 
that is, the required spatially contin- 
uous motion of the base 'of the switching 
button issues in the coincidence of the 
base with E1E2 at time t1. Hence 
the circuit is predictably closed at time 
tl-that is, the lamp must be on at 
the termination of the unit time inter- 
val t -- to. 

Indeed there is an important respect 
in which the motion of the button can 
be understood on the basis of the 
model of the legato runner's traversal 
of a progression of Z-intervals in the 
Dichotomy. The button's 0Ho downward 
motions involve the traversal of a total 
space interval of length 

1 

4 

Ld -2 
n = o 

And the button's Ko upward motions 
involve a total spatial displacement of 
length 

L 1 1 

But, of course, the button actually 
moves alternately down and up, start- 
ing at t = to with a downward motion 
through the initial distance ?/2. And, 
after traversing this initial distance, it 
traverses twice each of the space inter- 
vals 

1(n =1,2,3,...) 

by executing first an upward and then 
a downward motion through the same 
interval. Hence the button has the task 
of traversing a total interval of length 

La + L. = - 
6 

by traversing first an interval of /2 and 
then an infinite progression of sub- 
intervals 

11 , ., 1 , . . . 
4 16 64 4" 

(n= , 2, 3, .. .). 

Our mention of the legato runner's 
traversal of a progression of subinter- 
vals in the Dichotomy does not over- 
look the fact that all of the legato run- 
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ner's Ko Z-runs to his destination point 
are spatially in the same direction and 
proceed without velocity fluctuations, 
whereas the suitably decreasing mo- 
tions of the button which terminate 
in a closed state of the circuit at time 
t_ are K0 alternately down and up mo- 
tions. Specifically, the legato runner's 
uniform motion involves only one ini- 
tial acceleration of particular finite mag- 
nitude and one final deceleration of 
specific finite magnitude, whereas the 
accelerations (though not the veloci- 
ties!) of the button increase indefinitely. 
And, as Wesley Salmon has noted il- 
luminatingly, except for the legato mo- 
tion, all the processes we are discussing 
involve indefinitely large accelerations. 
But despite this difference between the 
legato motion and all the rest, there 
is a crucial similarity between them, 
with respect to which the completabil- 
ity of the latter is no less intelligible 
than that of the former. 

For what matters is that the runner 
reaches his destination at time t1 after 
traversing a progression of Z-runs, 
while there does not exist any last 
Z-run in the progression by means of 
which the termination of the motion 
could be effected. And what matters 
especially is that the terminal instant 
tl of the motion does not belong to 
any member of the progression of 
temporal subintervals corresponding 
to the Ko Z-runs, although every 
other instant of the motion be- 
longs to at least one such member. 
In short, what matters is that the run- 
ner's arrival at his destination at time 
tl. does not belong to any of the Z- 
runs and is surely not effected by the 
transversal of a nonexistent last Z-run 
terminating in that arrival. Similarly, 
the down-and-up motions of the lamp 
button form a suitably decreasing pro- 
gression which issues in an on-state 
at time tl, even though that on-state 
is not the terminus of any continuous- 
ly downward motion of positive dura- 
tion during which the lamp would be 
off. Nor can the on-state at time tl 
belong to any continuous on-state of 
positive duration whose first instant 
terminates a single continuously down- 
ward motion. Thus, if t, were the start 
of a continuous on-state of positive 
duration, the particular instantaneous 
on-state at t, would not be the terminus 
of a continuously downward motion. By 
contrast, within the confines of the half- 
open time interval to < t < t1 before 
tl, the first instant of any continuous 
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on-state of positive duration is the 
terminus of a continuously downward 
motion of positive duration. And, again 
within the confines of that half-open 
interval before t1, any instantaneous 
on-state which separates two continu- 
ous off-states is likewise the terminus 
of a continuously downward motion of 
positive duration. 

These considerations enable us to see 
that the production of Thomson's K0 
on-off states would not be feasible un- 
der the following alternative switching 
arrangement, even if we were to ensure 
the finitude of the total spatial displace- 
ment of the switching button (10). Let 
our modified switch button be movable 
through a linear space interval which 
is divided by a middle point C into 
upper and lower segments. And let us 
assume that the coupling between the 
positions of the base of the button and 
the lamp circuit is such as to satisfy 
the following conditions: (i) when the 
button base is at any point in the upper 
segment, the circuit is open and the 
lamp is off; (ii) when the button 
base is at any point in the lower seg- 
ment, the circuit is closed and the 
lamp is on; (iii) when the button-base- 
point coincides with the midpoint C, 
the lamp is on or off, respectively, if 
it arrived at C from above or from 
below; and (iv) if the button base is at 
the midpoint C at a time t, the exist- 
ence of an on-state of the circuit at 
t requires that the button base reached 
C from above at or before t, and- 
unless a circuit component (for exam- 
ple, the lamp filament) has burnt out- 
the existence of an off-state at t while 
the base is at C requires that the base 
reached C from below at or before 
t. To assure the kinematically required 
finitude of the total spatial displace- 
ment of the button base during the 
allowed finite time tl - to (1 minute), 
let the button base journey back and 
forth across C K0 times, so as to 
traverse suitably decreasing distances 
and reach C at time t1. After tl, we 
leave the switch in the position which 
it attained at t1. 

Our previous considerations now en- 
able us to assert that, at time tl, the 
button base cannot have reached C 
either by a continuous approach from 
above or by a continuous approach 
from below. For this much is required 
if the execution of Thomson's jabbing 
instructions is to be kinematically feasi- 
ble. But, in that case, the posited con- 
ditions governing the coupling (of the 

switching button to the lamp circuit 
entail the following conclusion: if the 
lamp circuit is still intact at t land 
thereafter, then the lamp is neither on 
nor off at time t1 and thereafter! Yet 
if the lamp circuit is intact at that 
time, the lamp must be either on or off. 
One can easily observe which of these 
two states prevails at tl and there- 
after by looking at the lamp bulb. 
Even if the lamp filament should have 
burned out at time tl, we can replace 
the bulb by a new one at that time 
and observe the state of the bulb there- 
after. Hence if it is claimed that Thom- 
son's required X0 on-off states of the 
lamp circuit permit the lamp circuit 
to endure intact up to and beyond the 
instant tl, a contradiction is introduced 
by the assumption that these X0 states 
can be produced by the suggested 
modified switching arrangement. 

Thus, in the case of the modified 
switching arrangement, no less than in 
the case of the kinematically impossi- 
ble upward and downward motions dis- 
cussed initially, the inability to predict 
the state of the lamp circuit at time 
t, is not at all a matter of insufficient 
information. And we see that the im- 
possible modified switching arrange- 
ment (S2) differs from the arrange- 
ment (Si) yielding la predictably closed 
circuit at time tl, as follows: in the 
case of SI, on and off respectively in- 
volve coincidence and noncoincidence 
of the button base with E1E2, while 
the on-state at tl is not the terminus 
of any continuously unidirectional (for 
example, downward) motion; but ar- 
rangement S2 requires that the one 
lamp state associated with the base's 
center position at time t1 and there- 
after be the outcome of a continuously 
unidirectional motion terminating at 
time tl. And precisely this is ruled out 
by the kinematics required for Thom- 
son's process. 

Physical Reasonableness of a 
Dense Temporal Order 

The mathematical theory of motion 
can be vindicated in the face of the 
James-Whitehead charge of temporal 
unintelligibility. And the key principles 
for the required account of the dense- 
ness of the time of physics are the fol- 
lowing: (i) the spatial path of a mov- 
ing classical particle is a linear con- 
tinuum of spatial points, and (ii) the 
classical particle cannot be at two dif- 
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ferent spatial points simultaneously. 
But these two principles entail that, 
for each of the densely ordered spatial 
points, there be at least one distinct 
instant of time at which the particle is 
at that spatial point. And in the simple 
case of a particle that visits any given 
place only once, the temporal between- 
ness of instants will simply correspond 
to the dense spatial betweenness of 
points. I must omit here the numerous 
technical details of the definition of 
temporal betweenness which I have 
given elsewhere (11) by means of the 
two stated principles. But I hope that 
enough has been said to indicate that 
this definition of temporal betweenness 
for punctal physical events yields a 
dense temporal order, for the following 
reason: it entails the conclusion that 
for any two events belonging to the 
motion, there is a linear continuum of 
others temporally between them. 

Indeed, the two principles ingredient 
in my definition of temporal between- 
ness serve as a basis for claiming that 
physical time must be dense because 
of the way in which space and time 
are related in physical motion: the as- 
sumed continuity of space drives us to 
the postulation of the continuity (and 
hence denseness) of time not because 
we are illegitimately "spatializing" time, 
as Bergson and James thought, but by 
virtue of our recognition of the role 
played by spatial continuity in the tem- 
poral process of motion. Whatever the 
historical origins of the concepts of 
denseness and linear mathematical con- 
tinuity in human thought, denseness is 
an abstract type 'of order. And one 
must therefore not overlook, as Berg- 
son did, the fact that logically the at- 
tribution of denseness to time no more 
"spatializes" time than its ascription to 
space "temporalizes" space. Even if the 
attribution of denseness to time were 

shown to be false, this ascription could 
not then be indicted as a spatialization 
of time. As well say that the false 
ascription of denseness to the integers 
(with respect to magnitude) would con- 
stitute a spurious spatialization of these 
numbers. 

It is now clear that, just as a theo- 
retically canonical appeal to such 
sensed attributes of physical objects as 
hot and cold can be scientifically stulti- 
fying, as Galileo recognized, so also 
the discreteness of perceived happen- 
ing can be unjustifiably invoked to en- 
cumber theoretical science. And now 
that we have overcome the objection 
that temporal denseness is physically 
unintelligible by justifying its postula- 
tion, we see (i) that we are absolved 
from the necessity 'of answering "how" 
a succession of events can occur by 
exhibiting a discrete sequence of oc- 
currence, and (ii) that there is no ordi- 
nal question as to "how" an interval 
of physical time can elapse at a 'given 
spatial point or in the form of a mo- 
tion despite its denseness. On the con- 
trary, having freed ourselves from the 
intellectual shackles of canonical ad- 
herence to perceived temporal happen- 
ings, we see that the kinematic an- 
swers to such how-questions involve an 
appeal to the denseness of time. And 
we see, furthermore, that there is noth- 
ing paradoxical about it. 

Summary 

The mathematical physicist Her- 
mann Weyl (2) has claimed that, un- 
less machines can accomplish an in- 
finite sequence ,of distinct operations 
in a finite time, the standard mathe- 
matical theory of motion is beset by 
one of Zeno's kinematical paradoxes. 
Hence I have compared the kinematics 

of several such "infinity machines" to 
the kinematics of the continuous mo- 
tion of Achilles. And I have argued 
that, while some designs for infinity 
machines are indeed inconsistent, oth- 
ers are not impossible on purely kine- 
matical grounds. This argument was 
coupled with several reasons for deny- 
ing Zeno's and A. N. Whitehead's alle- 
gation of paradox against the mathe- 
matical description of the motion of 
Achilles. 
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