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ic forms in various species are inter- 

preted in the light of this conclusion. 

Several geometrid and noctuid moths 
select appropriate backgrounds when 
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differing in reflectance (1, 2). These 

selections, if one assumes that they are 
visually based, could result from either 
of two mechanisms: (i) genetically fixed 

responses to particular background re- 
flectances, and (ii) matching responses, 
in which the moths compare certain 
parts of their bodies with their back- 
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the reflectances of two moths-a dark 
noctuid, Catocala antinympha, and a 

pale geometrid, Campaea perlata-by 
painting their circumocular scales. The 
results provided evidence of genetically 
fixed selections of background in these 
species. 

The moths were collected near 150- 
watt bulbs in Leverett, Massachusetts, 
during the summer of 1967. Individuals 
to be painted were placed in a cyanide 
killing jar until their flutterings ceased; 
this treatment rendered the moths in- 
active for 3 to 5 minutes. They were 
then painted with either black or white 
Flo-Paque paint; I used a very fine 
red sable brush and viewed them 

through a X 2 binocular loop. Paint 
was applied to all scales of the head, 
of the collar on the thorax, and of the 
bases of the forewings (Fig. 1). These 
scales, because of their reflectance 
(which appeared similar to that of the 

forewings) and their position around 
the eyes, were assumed to include any 
that the moths might use in a reflect- 
ance-matching process. 

The experimental apparatus consisted 
of two black and two white pieces of 
painted blotting paper, each 27.9 by 
48.3 cm, formed into a cylinder of 

alternating black and white sections. 
The cylinder was set in a plywood 
box (35.6-cm square by 48.3-cm high) 
which was covered with a pane of win- 
dow glass and a double layer of cheese- 
cloth. The entire apparatus was placed 
in a wooded area where a thick can- 

opy excluded direct sunlight, 
Each morning, between 0600 and 

0800 hours E.S.T., the background se- 
lections of the moths that had been 
collected and painted the previous eve- 

ning were noted, and the moths were 
taken for later determinations of re- 
flectance. 

The percentage-reflectance values for 
the backgrounds and the moths' fore- 

wings were determined (4). For each 

species of moth, the forewings of 12 
individuals were glued as montages onto 
black construction paper, and percent- 
age reflectance was measured over a 
circle, 2.85 cm in diameter, within each 
montage. The altered reflectances were 
obtained from montages of painted 
forewings. The reflectance of the con- 
struction paper was 7.33 percent. 

The reflectances and background se- 
lections of control and experimental 
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Fig. 1. Extent of the painted area on ex- 
perimental moths, as shown by comparison 
of an unpainted (top) and a white-painted 
(bottom) Catocala antirymnphla. Moths are 
slightly enlarged. 
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Fig. 2. Reflectances and background selec- 
tions of experimental and control moths of 
two species, with reflectances of the experi- 
mental backgrounds. The number of in- 
dividuals tested of each group is given. 
Significant deviations from chance selec- 
tions of black and white backgrounds are 
indicated by stars: one star, P < .05; two 
stars, P < .01. 
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Fig. 3. Reflectances and background selec- 
tions of two forms of Cosymbia pendulin- 
aria, with reflectances of the experimental 
backgrounds. The number of moths on 
the lightest two backgrounds was signifi- 
cantly greater than by chance in both 
forms (P < .001), but the two distribu- 
tions did not differ from one another 
(P > .20, chi-square tests). 
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These results are of further interest 
in the light of previous findings re- 

garding melanic forms in two species. 
Melanic individuals of Biston betularia 
(1) and Catocala ultronia (2) select 
darker backgrounds than do nonmelan- 
ic individuals. If one assumes that 
genetically fixed selections of back- 
ground are the rule in cryptic moths, 
the different forms of these species 
must differ genetically with respect to 
selections of backgrounds. Such genetic 
differences would be expected only in 

species characterized by long and con- 
tinuous polymorphism. Biston betularia 
is certainly such a species (5), and my 
own collecting over several years indi- 
cates that melanic Catocala ultronia 

consistently comprise 5 to 10 percent 
of the local population. 

In species in which melanics appear 
sporadically, genetic differences in se- 
lection of backgrounds may not be- 
come established. Such la situation 
apparently prevails in Cosymbia pendu- 
linaria, a typically pale geometrid: dur- 

ing the summer of 1967 a number of 
distinctively dark individuals of this 
species were collected, while none were 
taken during three previous summers 
of extensive collecting. The spring of 
1967 was abnormally cold (6), and, 
as exposure of moth larvae and pupae 
to low temperatures is known to pro- 
duce dark adults in various species (7), 
this fact may account for the dark 
individuals taken during 1967. At any 
rate, selections of background by the 
typical and dark moths of this species 
did not differ (Fig. 3). This result pro- 
vides additional evidence of genetically 
fixed preference ,of backgrounds in 

cryptic moths. 
T. D. SARGENr 

Department of Zoology, 
University of Massachusetts, 
Amherst 01002 
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Induction and Survival of Hemoglobin-Less and 

Erythrocyte-Less Tadpoles and Young Bullfrogs 
Abstract. Injection of two 25-microgram-per-gram doses of the hemolytic agent 

phenylhydrazine reduced the hemoglobin level and the erythrocyte count to less 
than 1 percent of normal tadpole and young bullfrog blood. These anemic animals 
survive for weeks with little change in overall metabolism. A slow recovery of 
hemoglobin levels was observed. The implications of this observation for com- 
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During anuran metamorphosis, tad- 
pole hemoglobins undergo a dramatic 
extensive alteration in molecular com- 
position and mechanism of biosynthe- 
sis (1-3). This results in hemoglobins 
of very different properties, particu- 
larly as to oxygen binding and other 
aspects of its chemistry (1-3). It has 
even been possible to attribute adap- 
tive significance to this change (4). In 
a continuing effort to study hemoglobin 
biosynthesis in the tadpole and frog, 
we recently attempted to alter the red 
cell population and, in particular, to 
increase the number of reticulocytes 
with an injection of a hemolytic agent 
(5). Unexpectedly, we were able to 
produce a complete anemia in these 
animals with no apparent serious meta- 
bolic distress to the tadpole. In this 

report we wish to present the evidence 
for this finding and briefly consider its 

implications. 
We injected Rana catesbeiana tad- 

poles intraperitoneally with the hemo- 
lytic agent phenylhydrazine (25 u/g/g 
of body weight). Figure 1 shows the 

hemoglobin levels of the tadpoles 1 and 
2 days, respectively, after injection, at 
20? -+ 1 ?C (temperature used for all ex- 

perimental periods reported). In 1 day 
the hemoglobin is reduced from 4.41 to 
2.5 g per 100 ml of whole blood, a 
reduction of 45 percent. After the sec- 
ond phenylhydrazine injection, the re- 

maining hemoglobin declines to 0.3 g 
per 100 ml, and, finally, to an almost 
undetectable level after the 4th and 
5th days. Partial recovery can be 
achieved in 16 days from the start of 
the experiment. Evidently, the dose of 
25 tgg/g is crucial for the maximum 
effect in this brief period. After two 
12.5 gxg/g doses, the hemoglobin was 
lowered to 1.2 g per 100 ml. Since 
the fall in hemoglobin is due to the 
destruction of red cells, the changes 
in tadpole blood cells were studied, 
with the results shown in Table 1. 
The number of erythrocytes drops from 
230,000 to less than 100 per cubic 
millimeter. The count of other types of 
cells drops considerably, except for the 

lymphocytes, which become the pre- 

parative biochemistry are considered. 
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lymphocytes, which become the pre- 

dominant cell type. Another species of 
bullfrog tadpole, R. grylio, also can 
be made completely anemic 3 days 
after one injection of phenylhydrazine 
(25 tug/g). Additional representative 
data on the effect of T3 (triiodothy- 
ronine) on this process are shown in 
Table 2. When three 25 jtg/g injec- 
tions of phenylhydrazine were given 
over a 19-day period and the blood 
tested 7 days later, the hemoglobin 
dropped from 5.0 to 0.18 g per 100 ml 
of whole blood. When T3 was given 

Table 1. Effect of phenylhydrazine on cell 
distribution in Rana catesbeiana tadpole 
blood. Experimental tadpoles were injected 
with phenylhydrazine (25 A/g/g) twice, at 24- 
hour intervals. Blood was analyzed on the 5th 
day. 

Cell count 
Cells (thousands of cells per mm3) Cells 

Control* Phenyl- 
hydrazinet 

Erythrocytes 232 0.07 
Erythroblasts 5.0 1.3 
Lymphocytes 9.0 9.1 
Leukocytes 4.0 2.2 
* Controls had 4.41 - .06 g of hemoglobin per 
100 ml of whole blood. f Experimentals had 
0.056 ? .015 g of hemoglobin per 100 ml. 

Table 2. Effect of phenylhydrazine on hemo- 
globin levels in bullfrog tadpoles and young 
frogs. Standard deviations are in parentheses. 
Gram % indicates grams of hemoglobin per 
100 milliliters of whole blood. 

Hemoglobin Experimental group (gram % 

R. catesbeiana tadpoles* 
Control 5.0 (0.6) 
7 days after 3 doses of phenyl- 

hydrazine 0.18(0.03) 
7 days after 3 doses of phenyl- 

hydrazine and T3 .70(0.2) 
9 days after 3 doses of phenyl- 

hydrazine .25 (0.04) 
R. catesbeiana frogletst 

Control 5.8 (0.80) 
1 day after phenylhydrazine 0.13(0.03) 
7 days after phenylhydrazine .01(0.04) 
14 days after phenylhydrazine .19(0.09) 
* One dose (25 /g/g) of phenylhydrazine given 
on 1st, 12th, and 19th days. In the case of 3,5,3'- 
triiodothyronine (T3), the injection (0.5 nmole/g) 
was given simultaneously with the last phenyl- 
hydrazine injection, producing a 50 percent de- 
crease in tail length 7 days later, on the 26th 
day. t The dose was 25 jlg/g. 
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Erythroblasts 5.0 1.3 
Lymphocytes 9.0 9.1 
Leukocytes 4.0 2.2 
* Controls had 4.41 - .06 g of hemoglobin per 
100 ml of whole blood. f Experimentals had 
0.056 ? .015 g of hemoglobin per 100 ml. 

Table 2. Effect of phenylhydrazine on hemo- 
globin levels in bullfrog tadpoles and young 
frogs. Standard deviations are in parentheses. 
Gram % indicates grams of hemoglobin per 
100 milliliters of whole blood. 

Hemoglobin Experimental group (gram % 

R. catesbeiana tadpoles* 
Control 5.0 (0.6) 
7 days after 3 doses of phenyl- 

hydrazine 0.18(0.03) 
7 days after 3 doses of phenyl- 

hydrazine and T3 .70(0.2) 
9 days after 3 doses of phenyl- 

hydrazine .25 (0.04) 
R. catesbeiana frogletst 

Control 5.8 (0.80) 
1 day after phenylhydrazine 0.13(0.03) 
7 days after phenylhydrazine .01(0.04) 
14 days after phenylhydrazine .19(0.09) 
* One dose (25 /g/g) of phenylhydrazine given 
on 1st, 12th, and 19th days. In the case of 3,5,3'- 
triiodothyronine (T3), the injection (0.5 nmole/g) 
was given simultaneously with the last phenyl- 
hydrazine injection, producing a 50 percent de- 
crease in tail length 7 days later, on the 26th 
day. t The dose was 25 jlg/g. 
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