The acceptor strength of the present compound is intermediate between that of the related but weaker π -acid, 1,2,3indanetrione (II) and that of tetracyanoethylene (III) ($E_A = 1.70$ ev).

SUPRABHAT CHATTERJEE Air Force Cambridge Research Laboratories, L. G. Hanscom Field,

Bedford, Massachusetts 01730

References and Notes

- 1. G. Briegleb, Angew. Chem. Int. Ed. Engl. 3, 617 (1964); Electron-Donator-Acceptor-
- 617 (1964), Electron-Donator-Acceptor-Komplexe (Springer-Verlag, Berlin, 1961).
 2. P. R. Hammond, Science 142, 502 (1963).
 3. A. R. Lepley and J. P. Thelman, Tetrahedron 22, 101 (1966).
- IOI (1960).
 R. E. Merrifield and W. D. Philips, J. Amer. Chem. Soc. 80, 2778 (1958).
 See Abstracts, 153rd Meeting, Amer. Chem. Soc., Miami Beach, Florida, 1967, Sect. O, 15.

- 6. H. McConnell, J. S. Ham, J. R. Platt, J. Chem. Phys. 21, 66 (1953).
- 7. M. Bately and L. E. Lyons, Nature 196, 573 (1962). A. Maccoll, *ibid.* **163**, 178 (1949); R. M.
- Hedges and F. A. Matsen, J. Chem. Phys. 28, 950 (1958); M. E. Peover, Trans. Faraday Soc. 58, 1656 (1962). 9. Solvent was dried before use. The polaro-
- graphic measurements were made with Sargent polarograph Model 21, a Sargent IR Compensator Model A, and a dropping-merelectrode. cury
- 10. In Eq. 3, $E_{\frac{1}{2}}$ is taken as positive.
- 11. Measurements of ESR were taken with a standard Varian V-4500 spectrometer (with a modulation of 100 kc/sec) and a magnet (9 cm). Electrolysis was conducted between platinum and silver-silverperchlorate reference electrodes at 1.0 to 1.12 volts. inum
- electrodes at 1.0 to 1.12 volts.
 R. Beukers and A. Szent-Györgyi, *Rec. Trav. Chim.* 81, 541 (1962).
 I thank Dr. K. Bower (M.I.T.) for providing the electrolytic cell, and Professor K. Weiss
- (Northeastern University) for suggestions.

24 May 1967

Lungfish Neoceratodus forsteri: Activities of Ornithine-Urea Cycle and Enzymes

Abstract. The level of activity of the ornithine-urea cycle is low in the liver of the permanently aquatic Australian lungfish. The rate of incorporation of 14C-bicarbonate into urea by liver slices was only 100th of that previously observed in the estivating African lungfish Protopterus dolloi. The activities of enzymes of the ornithine-urea cycle were similarly reduced. The low activity of this cycle in Neoceratodus is consistent with its exclusively aquatic nature.

Members of the two surviving families of lungfishes, Lepidosirenidae and Ceratodontidae, differ from one another in ecological behavior. The African Protopterus and the South American Lepidosiren, belonging to the former family, must breathe air at rather frequent intervals and they estivate in burrows out of water during dry seasons. The sole surviving member of the latter family, the Australian Neoceratodus forsteri, appears to use its lung only as an accessory respiratory organ during periods of high activity, and it cannot survive deprivation of water by burrowing and breathing air as can the African and South American dipnoans (1). Ability of the liver to synthesize urea by way of the ornithineurea cycle was recently demonstrated in the African lungfish Protopterus (2, 3, 4). This cycle has survival value in Protopterus during its periods of estivation, when ammonia cannot be excreted and is incorporated into urea. We tried to determine whether Neoceratodus, which never leaves the water and therefore has no need to detoxify ammonia, possesses a functional ornithine-urea cycle.

Two adult Neoceratodus were obtained from Australia (5). The fish, weighing 2.8 and 5.4 kg and in good condition, were immediately placed in separate fiberglass tanks containing aged tap water at 20° to 30°C. During the

Table 1. Incorporation of ¹⁴C-labeled bicarbonate into urea by liver slices of Neoceratodus. Approximately 200-mg slices were incubated in 3.0 ml of Krebs-Ringer solution (diluted 2 parts to 3 with water) containing $10^{-2}M$ ammonium chloride, $10^{-2}M$ sodium lactate, $10^{-3}M$ L-ornithine, and ¹⁴C-labeled bicarbonate (6.8×10^5 count/min). The mixtures were shaken for 1 hour in 100-percent oxygen at 30°C.

Fish	Modification of assay	Incorporation (%)*	¹⁴ C-urea (count min ⁻¹ g ⁻¹ hr ⁻¹)	Urea synthesis† (µmole g ⁻¹ hr ⁻¹)
Neoceratodus X Neoceratodus X Neoceratodus X Neoceratodus X Neoceratodus Y	None Slices boiled L-Citrulline, $10^{-2}M$ L-Arginine, $10^{-2}M$ None	0.01‡ .001 .01 .004 .02	382 34 352 120 576	3.8×10^{-3} 5.8×10^{-3}

* [Count min⁻¹ in urea/count min⁻¹ in incubation medium] \times 100. † Calculated by dividing (count min⁻¹ g⁻¹ hr⁻¹) by specific activity of ¹⁴C-bicarbonate (10⁵ count min⁻¹ μ mole⁻¹) in medium, ‡ Average of duplicate assays. § Six fish, average. dividing

next 2 days samples of the water were analyzed for ammonia (6) and urea (7). The rates of excretion of ammonia and urea in fish X were 98 and 5.5 μ mole kg^{-1} hour⁻¹, respectively. In fish Y the rate of excretion of ammonia was 156 μ mole kg⁻¹ hour⁻¹; no urea was detectable in the bath water. Neoceratodus appears to be much more "ammoniotelic" than P. ethiopicus, which eliminates up to 50 percent of its nitrogenous end products as urea when in water (8).

Within 2 days of arrival the animals were pithed and the livers were removed immediately and assayed for (i) the presence of a functional ornithine-urea cycle in liver slices, and (ii) the individual enzymes of the cycle. Urea-cycle activity of liver slices was assayed by following the incorporation of ¹⁴C-bicarbonate into urea (Table 1; 4). The activities of carbamoyl phosphate synthetase, ornithine carbamoyltransferase (Enzyme Nomenclature, 2. 1.3.3), argininosuccinate synthetase (6. 3.4.5), argininosuccinate lyase (4.3.2.1), and arginase (3.5.3.1) were assayed in liver homogenates according to Janssens and Cohen (Table 1; 3). Carbamoyl phosphate synthetase, being barely detectable by the colorimetric assay, was assayed by another method (9). Enzyme activities were calculated from the ¹⁴C incorporated into citrulline, relative to the specific activity (counts per minute per micromole) of the ¹⁴C-bicarbonate substrate.

The percentage incorporation of ¹⁴Cbicarbonate into urea was very low (Table 1), being 0.01 to 0.02 percent of the radioactivity present in the medium -about 100 count/min (above background) as ¹⁴C-urea. The average production of ¹⁴C-urea by liver slices from both fish was 480 count/min g^{-1} hour $^{-1}$. The boiling of liver slices for 5 minutes reduced the incorporation of ¹⁴C-bicarbonate into urea to onetenth of the value observed in untreated slices (fish X, Table 1). Addition of unlabeled citrulline to the incubation medium, which was expected to reduce the ¹⁴C incorporated into urea by competing with ¹⁴C-citrulline formed from ¹⁴C-bicarbonate, had little effect on the rate of synthesis of ¹⁴C-urea. On the other hand, unlabeled arginine reduced the rate of synthesis of ¹⁴C-urea to about one-third of that for untreated slices.

The difference in effectiveness of unlabeled citrulline and arginine as inhibitors of synthesis of ¹⁴C-urea may be related to relative rates of uptake or to differences in pool size of the two

Table 2. Activities of enzymes of the ornithine-urea cycle in Neoceratodus liver. Carbamoyl phosphate synthetase determined by radioactive assay (see text). BLD, below limit of detection.

Fish	Carbamoyl phosphate synthetase	Ornithine carbamoyl- transferase	Arginino- succinate synthetase	Arginino- succinate lyase	Arginase
Micromoles	of product	per gram of	tissue per h	our	
Neoceratodus X	0.45	156	BLD	12.6	1530
Neoceratodus Y	.30	154	4.3	8.5	1048
Protopterus (3) (two fish, av.)	31.2	1675	6.6	56.8	34,800
Micromoles of	product per	r milligram og	f protein pe	r hour	
Neoceratodus X	0.006	2.88	BLD	0.231	28.1
Neoceratodus Y	.004	1.94	0.067	.134	16.4
Protopterus (3) (two fish, av.)	.63	37.7	.16	1.33	795

amino acids in the liver slices. In any event the inhibitory effect of unlabeled arginine suggests that ¹⁴C-bicarbonate is entering urea by way of the ornithine-urea cycle. The rate of synthesis of urea by liver slices of Neoceratodus is 3.8 to 5.8 imes 10⁻³ μ mole g⁻¹ hour⁻¹ (Table 1)—approximately 100th of that observed in P. dolloi (Table 1) and consistent with the low rate of excretion (production) of urea in Neoceratodus. Since the ratios of liver weight to body weight are similar in Neoceratodus and Protopterus (0.01), the rate of synthesis of urea per kilogram of body weight in Neoceratodus is 100th of that in Protopterus.

The presence of all enzymes of the ornithine-urea cycle was demonstrated in extracts of livers from Neoceratodus (Table 2; Fig. 1). The levels of these enzymes are very low compared to those previously found in P. ethiopicus (Table 2). The activity of carbamoyl phosphate synthetase, which appears to be rate-limiting for synthesis of urea in Neoceratodus liver, is about 100th of that of Protopterus. The difference in activity of carbamoyl phosphate synthetase between Neoceratodus and Protopterus corresponds to the difference in rate of incorporation of ¹⁴Cbicarbonate into urea by liver slices (Table 1).

phosphate synthetase Carbamoyl from Rana (10) and Protopterus (3) is dependent on N-acetyl-L-glutamate for activity, but Neoceratodus liver showed

Fig. 1. Synthesis of citrulline by extracts of *Neoceratodus* liver. The complete system contained 500 μ mole of ammonium bicarbonate, 42 μ c of ¹⁴C as 1.55 μ mole of sodium bicarbonate, 50 µmole of adenosine triphosphate, 50 µmole of L-ornithine, 50 µmole of N-acetyl-L-glutamate, 100 µmole of MgSO₄, 300 µmole of glycylglycine buffer (*p*H 7.5), and 600 units of purified beef ornithine carbamoyltransferase in a final volume of 10 ml. The incubation (30 minutes at 38° C) was terminated by addition of 10 ml of 10-percent trichloroacetic acid, and CO₂ was bubbled through the medium for 1 hour. After centrifugation, 20 µmole of L-citrulline was added to the supernatant, which was chromatographed on a 1- by 10-cm column of Dowex 50 (H^+) . Gradient elution with HCl was employed (9). Fractions (5-ml) were collected and assayed for citrulline (13) and radioactivity (liquid scintillation). Solid circles, complete system; open circles, complete system minus N-acetyl-L-glutamate. The identity of peak A was not investigated; peak B corresponds to the elution pattern of citrulline.

activity even in the absence of added N-acetyl-L-glutamate (Fig. 1). Liver extracts did not activate purified carbamoyl phosphate synthetase from frogs. Enzyme activity in Neoceratodus liver in the absence of added N-acetyl-Lglutamate, therefore, cannot be explained by a high concentration of activator in the liver of this species unless the K_m for N-acetyl-L-glutamate in Neoceratodus is very much below that in the frog. Resolution of this problem must await purification of carbamoyl phosphate synthetase from Neoceratodus liver, which was rendered impossible by the extremely low activity of this enzyme and the small amount of tissue available.

It is significant from an ecological point of view that Neoceratodus has the ability, albeit very limited, to incorporate ammonia into urea by way of the ornithine-urea cycle present in its liver. On the other hand, the enzymes of this cycle also function in biosynthesis of pyrimidine and amino acid (11), and their presence in this dipnoan may be more related to the latter functions. It is interesting that carbamoyl phosphate synthetase of mouse spleen, which is thought to function mainly in biosynthesis of pyrimidine in this organ, is not activated by N-acetyl-L-glutamate (12). LEON GOLDSTEIN

Department of Physiology, Harvard Medical School, Boston, Massachusetts Peter A. Janssens Department of Physiological Chemistry,

University of Wisconsin, Madison ROY P. FORSTER

Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire

References and Notes

- G. C. Grigg, Australian J. Zool. 13, 413 (1965).
 G. W. Brown, Jr., Science 149, 1515 (1965).
 P. A. Janssens and P. P. Cohen, *ibid.* 152, 358 (1966).
- 4. R. P. Forster and L. Goldstein, ibid. 153,
- R. P. Forster and L. Goldstein, *ibid.* 153, 1650 (1966).
 We thank G. G. T. Harrison, Chief Inspector of Fisheries, Brisbane, Australia, for permission to import two *Neoceratodus*; and K. Williams of the Goldstein Fish Hatcheries, Bris-

- liams of the Goldstein Fish Hatcheries, Brisbane, for arranging shipment.
 R. H. Brown, G. D. Duda, S. Korkes, P. Handler, Arch. Biochem. Biophys. 66, 301 (1957).
 J. B. Balinsky and E. Baldwin, J. Exp. Biol. 38, 695 (1961).
 H. W. Smith, J. Biol. Chem. 88, 97 (1930).
 L. M. Hall, R. C. Johnson, P. P. Cohen, Biochim. Biophys. Acta 37, 144 (1960).
 M. Marshall, R. L. Metzenberg, P. P. Cohen, J. Biol. Chem. 233, 102 (1958).
 P. P. Cohen and G. W. Brown, Jr., in Comparative Biochemistry, M. Florkin and H. S. Mason, Eds. (Academic Press. New York. Mason, Eds. (Academic Press, New York, 1960), vol. 2, p. 161.
- M. Tatibana and K. Ito, Biochem. Biophys. Res. Commun. 26, 221 (1967).
 R. M. Archibald, J. Biol. Chem. 156, 121 (1944).
 Supported by NSF grants GB5613 and G-21237 and PHS grant HE-04457.