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visible light, it is reasonable to let 
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cm; otherwise X equals 1 (10). Earlier 

computations (11) for v(r, h) on Mars 
were adapted to the atmosphere of 
Venus. An atmospheric model (12) was 
used, with surface temperatures of 
620? to 720?K and surface atmospheric 
densities of 0.0174 to 0.150 g/cm3. 
Typical values of v(r, h) at 50 km were 
0.0074 cm/sec for particles 1 ,t in 
diameter, 0.66 cm/sec for 10-yx diam- 
eter, and 5.1 cm/sec for 100-/A diam- 
eter. The velocity of descent of very 
small particles is roughly proportional 
to the diameter squared. The particles 
were assumed to ascend to a tropo- 
pause altitude (hr) of 60 km. The cal- 
culation of v(r, h) is not valid for ex- 

tremely small particles, so the integra- 
tion of r was cut off at r < 2 X 10-5 
cm = 0.2 ). Numerical integration of 
the optical depth yields the result 
r - 2.7 X 106 S for a mean atmo- 
sphere; this result is quite insensitive to 
the choice of atmospheric parameters. 

It is apparent that r is of the order 
unity for S - 3 X 10-7 sec-1, about 
ten explosive eruptions per annum or 
10 km3 of material annually injected 
into the atmosphere. This rate of vol- 
canic activity is considerably higher 
than the current rate on Earth if only 
the most violent eruptions carry large 
amounts of material as high as the 
tropopause. Nonetheless it does not 
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We report probable observation of 
the reflection by free radicals in Earth's 
upper Antarctic atmosphere of mega- 
cycle-per-second radiation. The meas- 
urements were obtained with the top- 
side ionosonde satellite Alouette II; rec- 
ords from the south polar station were 
used because they were exceptionally 
clear. The satellite (1), lofted into a 
nearly polar orbit with apogee at 3000 
km and perigee at 500 km, remains well 
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seem unreasonable to us that Venus 
should sustain a rate of volcanic ac- 
tivity sufficient to keep the optical depth 
of suspended dust greater than unity. 
Our conjectural atmosphere would 
therefore contain high clouds of H20 
vapor and ice, and other volcanic 
gases, surmounting an optically thick 
suspension of fine dust particles. The 
dust particles might not be readily de- 
tectable from above, but would have 
profound effects on the dynamics of 
the lower atmosphere. 
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above the main part of the ionosphere. 
Basically our point is that such radio- 

frequency sounding is an important 
technique for analysis of the upper 
atmosphere. The probability of spon- 
taneous emission of magnetic-dipole 
emission at megacycle frequencies is 
very low, so that only absorption and 
induced emission are important. We 
calculate that by using the Alouette 
ionosonde one should be able to 
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detect induced magnetic-dipole radiation 
from free radicals at concentrations as 
low as approximately 104/cm3 (see 2). 

The signals we report, of frequencies 
lower than the electron gyrofrequency, 
have not been previously identified; 
we suggest that they are from magnetic- 
dipole transitions induced by the top- 
side sounder pulse-transitions within 
a Zeeman multiplet split by Earth's 
magnetic field. 

Our investigation stemmed from pre- 
vious studies of the strange triggering 
action of the Jovian moon Io on the 
decameter radiation from Jupiter. Re- 
cently two of us suggested (3) that Io, 
orbiting in a Van Allen belt, produces 
energetic hydromagnetic disturbances in 
the Jovian magnetic field, which prop- 
agate by Alfven-wave transport into 
the Jovian ionosphere below. Free rad- 
icals, expected to be abundant in Jupi- 
ter's reducing atmosphere, transduce 
this perturbing energy in a manner 
similar to reflection, the energy being 
emitted as the decameter radio signal. 

The ionosonder in Alouette II is a 
transmitter and receiver which simul- 
taneously sweeps from 0.2 to 14.5 
Me/sec during each 30-second interval. 
At the beginning of each interval the 
transmitter emits a 100-1tsec pulse at a 
frequency of 0.2 Mc/sec and an aver- 
age power of 300 watts. After a 2-/tsec 
delay, there follows a receiving period 
of 33 msec; then the transmitter emits 
a second pulse of higher frequency, 
followed by another listening period, 
and so on. 

This sequence is repeated 900 
times during the 30-second interval 
as the frequency increases from 0.2 
to 14.5 Me/sec, the pulse length and 
power and the receiving period re- 
maining constant. For each interval 
an ionogram displays the frequency of 
any detected signal, its time of arrival, 
its intensity, and the real time. For the 
ionogram records now reported, the 
signal intensities were not available. 

Figure 1 shows a series of consecu- 
tive 30-second ionograms, with examples 
of signals that we attribute to induced 
magnetic-dipole radiation from free rad- 
icals. Figure 2 shows a distribution of 
Lande g values calculated from some 
500 signals found by examination of 
more than 100 ionograms; the values 
were computed from the frequency of 
each signal divided by the local geo- 
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Radio Reflection by Free Radicals in Earth's Atmosphere 

Abstract. Reflections of megacycle-per-second radio signals by free radicals 
in Earth's ionosphere are observed having about the intensity predicted for 
induced magnetic-dipole transitions. It seems that magnetic atoms, ions, and 
molecules in planetary atmospheres may be detected by this method. These ob- 
servations were made with the topside ionosonder of the Canadian satellite 
Alouette II. 
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Table 1. Lande g values for ground and meta- 
stable states of atomic and molecular species 
in Earth's atmosphere. 

Free g Value raical tate radical 

0.71-0.74 OH Ground 2II3/2 

0.76-0.79 NO Ground 213/2 
0.79 OH Ground 2I3/3 
0.80 N I Metastable 2D3/2 
0.80 0 II Metastable 2D/2 
1.00 N II Metastable 1D, 
1.00 O I Metastable 1D. 
1.20 N I Metastable 2D15/ 
1.20 0 II Metastable 2D5/2 
1.33 N I Metastable P3/2 
1.33 0 II Metastable "P8/2 
1.45 OH Ground 2T3/2 
1.50 N II Metastable SP2 
1.50 O I Ground fP,, 

agree within 1 percent with values 
computed from the electron gyrofre- 
quency and its harmonics as shown on 
the ionograms. 

Probable magnetic-dipole reflections 
are indicated by peaks in the g-value 
distribution of Fig. 2. Appropriate g 
values are labeled by the states of 

atomic oxygen and nitrogen and mo- 
lecular OH and NO that appear to fit. 
Table 1 contains a list of likely free 
radicals, with their g values. 

Transitions having g values less than 
0.6 and greater than about 1.8 have 
not been measured because of ionogram 
noise at lower frequencies and the 
broad cyclotron and plasma and hybrid 
signals at higher frequencies. For spe- 
cies showing g = 2.0 (for example, 
ground states of H I, He II, N I), detec- 
tion is hampered because the magnetic- 
dipole signal coincides with the elec- 
tron gyrofrequency. 

The sources of the peaks at g values 
of 0.93 and 1.68 to 1.76 have not been 
identified. In general, g values have 
been measured in the laboratory for 
very few gaseous atomic species and 
even fewer gaseous diatomic species 
(4). In making these identifications we 
have used theoretically calculated g 
values for atomic species (5), and ex- 
perimental g values for the diatomic 
species (6). 

In this method of analysis, ambi- 
guities arise for monatomic species: 
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Fig. 1. lonograms from the Alouette II topside ionosonde, taken over Antarctica and 
showing signals thought to be caused by magnetic-dipole transitions induced by free 
radicals. The cyclotron frequency of free electrons (right) is seen to move with 
changing local magnetic field, and the free radical signals move in the same way. The 
gyromagnetic ratios, g Values, for the several signals are shown on the left of the 
ionograms. The legend on each ionogram indicates universal time (6-digit number), on 
day 029 of 1966, local magnetic field in gauss, altitude in kilometers, and electron 
cyclotron frequency v, in megacycles per second. 
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Fig. 2. Distribution of g values for about 
500 signals taken from over 100 iono- 
grams recorded in Antarctica. Peaks in the 
distribution are believed to be reflections 
from free radicals. The labels indicate 
possible assignments of free radicals. (We 
believe that the peak at 1.50 may have 
been somewhat shifted as a result of 
determinable errors in the fiducial iono- 
gram markers.) 

for example, nitrogen and oxygen, and 
even neon (7), show similar ground and 
metastable states-N I (4S, 2p, 2D), N II 
(3P, 1D), N III (2p), 0 I (3P, 1D), 0 II 
(4S, 2P, 2D), 0 III (3P, 1D)--and the 
g values will be common insofar as 
these species behave according to the 
theory. 

For diatomic species the g values 
may very well be distinctive but nu- 
merous, for the effect of the molecular 
vibration and rotation produces differ- 
ent g values in each fine-structure state. 
These values cannot be calculated with 
certainty and very few have been meas- 
ured (4). Oxygen is an exception. For 
molecular oxygen (8) the g values are 
known to be 0.5 and smaller, so that 
emission in this instance would occur 
at frequencies near the lower edge of 
the range of our observations. 

Considering the local electron densi- 
ties to be about 105/cm3, as indicated 
by plasma frequency reflection (9) on 
the ionograms (see, for example, Fig. 
1), it may be that Earth's upper iono- 
sphere provides an excellent laboratory 
for measurement of g values. 
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Abstract. Geostrophic velocity and transport of water in the Drake Passage 
relative to a newly defined zero reference layer indicate that the circumpolar 
current is basically north of 59?S, with its axis north 57?S, and that the total 
volume transport exceeds 200 X 106 cubic meters per second. The calculated geo- 
strophic velocities are consistent with results of descriptive water-structure studies. 
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Estimates of the total volume trans- 
port through the Drake Passage vary 
from 0 (1) to 165 X 106 m3/sec (2). 
The uncertainty arises from a lack of 
direct current measurements and an in- 

ability to define a satisfactory refer- 
ence layer. The reference layer is 
needed to convert relative geostrophic 
velocities into absolute values. For this 

purpose, the level of no motion or the 
zero reference layer is generally used. 
It can be found by various methods 

(3). 
In general, velocity decreases with 

depth; therefore, any deep isobaric 
surface would suffice as a zero refer- 
ence layer for the determination of sur- 
face currents. However, the depth of 
the zero reference layer becomes criti- 
cal for calculations of deep currents 
and total volume transport. 

Table 1 summarizes the past esti- 
mates of the total volume transport 
through the Drake Passage. The trans- 

port values vary with changes of the 
reference layer, even though, in many 
cases, the same hydrographic data are 
used. 

The zero reference layer in the 
southern Drake Passage (4) is used to 
determine the mean density of over- 

lying water. The reference layer may 
then be extended northward by use of 
the equivalent-barotropic assumption 
(5). This assumption has yielded mean- 

ingful results in stratified water (5) and 

may be of use in water of a homo- 

geneous nature such as that found in 
the Antarctic Ocean. The assumption 
was applied to the Drake Passage by 
Ostapoff (1, 6); however, the initial 
zero reference layer was found by ex- 

trapolation of Defant's Atlantic Ocean 
reference layer (7) into the Drake Pas- 

sage. Ostapoff's resulting velocities 
show a westward-flowing deep and 
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bottom current. This calculation does 
not agree with the descriptive analysis 
of the hydrographic data which indi- 
cates that the bottom flow of the north- 
ern Drake Passage is rapid and toward 
the east, and that no zero reference 

layer exists within the water column 
of the northern Drake Passage (4, 8). 

The hydrographic stations for which 

geostrophic calculations were perform- 
ed are plotted in Fig. 1. The calcu- 
lated velocities are perpendicular to the 
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Fig. 1. Hydrographic stations used in geo- 
strophic calculations. 
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Fig. 2. Depth of zero reference layer in 
the Drake Passage. 
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