
The Role of Intuition 

Intuition plays a basic and indispensable role in 
mathematical research and in modern teaching methods. 

R. L. Wilder 

I can recall that when I was a doc- 
toral student, I was admonished again 
and again by my advisers, "Don't let 

your intuition fool you." I cannot, how- 
ever, remember just what I took this to 

mean; I probably thought it meant, 
"Don't let your imagination lead you 
astray; what you think is true may 
very possibly turn out to be false." 

One of my favorite articles in this 
connection is a transcription of a lec- 
ture by Hans Hahn, entitled "The 
crisis in intuition," in the anthology 
edited by J. R. Newman entitled The 
World of Mathematics (1). This article 
echoes the warnings of my early teach- 

ers, and especially the admonition that 
"what you think is true may very pos- 
sibly turn out to be false." In fact, one 
can easily get the impression from 
Hahn's article that "intuition" is a 

thoroughly unreliable guide and that 
one should regard it with suspicion 
even when its every suggestion has been 

rigorously checked. 
Now insofar as checking carefully 

the suggestions of one's intuition is 
concerned, no lone would quarrel with 
this, I believe. But as for intuition be- 

ing thoroughly unreliable, I am of the 

opinion that this mental quality, what- 
ever it is, has been too much maligned. 
Indeed, I would go so far as to say 
that without it, mathematical creation 
would well-nigh cease, and modern 
methods of teaching would be difficult 
to justify. 

Nature of Mathematical Intuition 

In order to support these conten- 
tions, it must be made clear just what 
is meant, in mathematics, by "intui- 
tion." 

Not so long ago, those who were 
trying to test intelligence got into a 
predicament because they ignored the 

problem of defining exactly what they 
meant by "intelligence." Subsequently, 
these testers came up with a number, 
the "intelligence quotient" or I.Q., and 
it was demonstrated that the student 
with the higher I.Q. would, generally 
speaking, do better in his studies than 
the one with lower I.Q. But the con- 

cept o,f the I.Q. as a measure of some- 

thing called "native intelligence," that 
is, the intelligence bequeathed to the 
individual by his heredity, had to be 
abandoned. After numerous experi- 
ments, especially with inductees dur- 

ing World War I, iit became clear that 
the cultural environment so modifies 
this native intelligence as to render the 

I.Q., at moist, a measure of the com- 
bined effect of heredity and environ- 
ment on the individual's capacity for 

learning, his perception, and his de- 

gree of conformity to cultural direc- 
tives. And an I.Q. could, over a period 
of time, be lowered or raised by the 
environmental factors active during the 
period (2). 

Coming back to mathematical intui- 
tiion, we might expect to find an anal- 
ogous situation. I believe that the in- 
tuition about which some philosophers 
speak is-if not wholly, at least partial- 
ly-a "native intuition." Thus Des- 
cartes stated (3): "By intuition I un- 
derstand, not the fluctuating testimony 
of the senses, nor the misleading judg- 
ment that proceeds from the blunder- 
ing constructions of imagination, but 
the conception which an unclouded 
and attentive mind gives us so readily 
and distinctly that we are wholly freed 
from doubt about that which we un- 
derstand." And Kant, as I interpret 
him, conceived of the concepts of both 
time and space as deriving from an 
a priori intuition which is independent 
of experience. Among the more mod- 
ern philosophers, especially those of a 
mystical bent, knowledge imparted by 
this native intuition may be considered 
more valid than that gained from ob- 

servation and experience. The "intui- 
tionism" of Brouwer and Poincare, in- 
sofar as it conceived of the natural 
numbers as "intutitively given," seems 
to proceed from this native intuition 

(4). 
I do not believe that my teachers 

had in mind anything like this native 
intuition. Moreover, I have always 
doubted whether they ever tried to 

analyze just exactly what they meant 

by "intuition." But I believe that they 
associated it, in some way, with experi- 
ence-mathematical experience, to be 
more precise-and that the more ex- 

perienced the mathematician became, 
the more reliable did his "intuition" 
become. That is, mathematical intui- 
tioln, like intelligence, is a psychologi- 
cal quality which stems possibly from 
a hereditarily derived faculty, but 
which is, at any given time, principal- 
ly an accumulation of attitudes derived 
from one's mathematical experience. 
This should not be taken to mean 
that mathematical intuition is some- 

thing which already contains one's at- 
titude toward a mathematical situation 
which one has never faced before. In- 
deed, in this day of widely diversified 
branches of mathematics, a mathema- 
tician may be expected to have little 
or no intuition regarding a branch of 
mathematics in which he has never 
worked; his intuition is of use chiefly 
in those areas with which he has had 
some experience. There is some agree- 
ment between this assertion, I think, 
and the one with which Hahn con- 
cluded his article (1), namely, that in- 
tuition "is force of habit rooted in 
psychological inertia." Like intelli- 
gence, and I refer here to the kind 
that I.Q. testers have in mind, intui- 
tion is greatly influenced, possibly whol- 
ly formed, by the cultural environ- 
ment-probably even more iso than is 
intelligence. For I believe, in particular, 
that the average nonmathematician has 
no mathematical intuition at all, ex- 
cept that nebulous quality of the mind 
which, if nourished by experience with 
mathematics, would develop into what 
we call mathematical intuition. 

Individual versus Collective Intuition 

I have used the word "psychologi- 
cal" with reference to intuition (from 
here on, "intuition" will mean "mathe- 
matical intuition"). I wish to emphasize 
that my ultimate concern is with the 
intuition of the individual mathema- 
ticilan. I am not unaware of the fact 
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that concerning certain questions there 
is essentially what might be called a 
collective or cultural intuition. For in- 
stance, before Weierstrass gave his ex- 
ample of a real continuous function 
having no derivative at any point of 
its interval of definition, probably al- 
most every mathematician felt intui- 
tively that such a function could not 
exist; this intuition had become a cul- 
tural attitude, a common belief. But 
consider the four-color map problem 
(5): I doubt if the average mathemati- 
cian today has any intuitive feeling 
regarding whether there exists or does 
not exist a map that cannot be colored 
with at most four colors-simply be- 
cause he has never worked on the 
problem. And an analogous statement 
can be made about the so-called "last 
theorem of Fermat," as well as a hosit 
of other problems. Before one can 
have a really intuitive feeling about 
such problems, one must have worked 
on them. But everyone who has gone 
very far in mathematics will have 
worked with functions of a real vari- 
able and can be expected to have de- 

veloped an intuition for them. A simi- 
lar remark holds for the structure of 
the real-number continuum. So far as 
those mathematical concepts that form 

part of the equipment of every mathe- 
matician are concerned, there can be 

expected to exist a kind of intuition 
that is common to most members of 
the mathematical community. But as 
soon as one goes beyond these con- 

cepts to mathematical specialties-par- 
ticularly to their frontiers-then the in- 
tuition becomes a quite individual af- 
fair; and it is this intuition that is of 
immediate importance in creative 
work. 

But this is entirely in accord with 
the concept of mathematical intuition 
as an. accumulation of attitudes de- 
rived from one's experience. Regard- 
ing matters of common knowledge, 
such as function theory, the attitudes 
we acquire are determined by our 
teachers, and the relation to the gen- 
eral mathematical culture of the time 
is apparent. But when one cultivates 
a special area of interest, and especial- 
ly as he becomes involved in research 
;on its frontiers, then one develop,s his 
own attitudes in the light of his own 

personlal experiences. Only he can make 
the educated guess, since he has devel- 
oped his own intuition. And although 
the connection with the current cul- 
tural atmosphere is still traceable, it 
is much less direct. 

Coming to my main topic-the role 
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of intuition-it is advisable, I believe, 
to look at some specific examples first. 
And since the manner in which intui- 
tion exerts its influence varies accord- 
ing to whether it is collective (cultur- 
al) or individual, and whether it is 
true or false, I shall separate my ex- 
amples along those lines. 

Examples 

Let us first consider the intuition 

apparently possessed by the Greeks, 
and certainly by their medieval suc- 
cessors, that the parallel axiom was 
true. I use the word "true" in the 
absolute sense in which they seem to 
have used it. This was an intuitive be- 
lief possessed by all mathematicians, 
since during the period involved every- 
one who professed to be expert in 
mathematics was expected to be famil- 
iar with Euclid's Elements. It was an 
instance in which the collective intui- 
tion was a false guide-a case typical 
of those which Hahn cited in his arti- 
cle. It is interesting, however, to try 
to assess the overall influence which 
this intuition had on mathematics. That 
an intuition was false is not sufficient 
reason to conclude that it was bad. 
And in this case, I believe that the in- 
fluence was highly beneficial. For if it 
had not been for the conviction that 
the parallel axiom could be proved 
from the other axioms of Euclid-and 
this conviction was a direct result of 
the common intuition concerning its 
truth-then possibly the appearance of 
the non-Euclidean geometries together 
with their effect on all mathematics 
and philosophy might have been de- 
layed. Of course the non-Euclidean ge- 
ometry would most certainly have been 
discovered sooner or later, if for no 
other reason than that the axiomatic 
method, as Hilbert, for example, con- 
ceived it in his Foundations of 
Geometry, was already beginning to 
emerge in the work of such mathemati- 
cians as Boole, Hamilton, and others. 
And someone would no doubt ulti- 
mately have experimented with alter- 
natives for the parallel axiom, just as 
Hamilton and Grassmann experimented 
with denials of the commutative laws 
of algebra. But because of the special 
position held by Euclidean geometry, 
not only in philosophy, but as part of 
the general mathematical curriculum, 
the impact of the eventual realization 
of the independence of the parallel 
axiom on the mathematical and phil- 
osophical community started a chain 

of research, the effects of which caused 
a virtual revolution in philosophical 
and mathematical thought. 

I have already mentioned the intui- 
tion, also false, which underlay the 
conviction that every continuous func- 
tion must have a derivative at some 
point of its interval of definition. I 
am confident that, if a study were 
made of the historical background pre- 
ceding publication of Weierstrass's ex- 
ample (6), it would be found that the 
influence of this false intuition had 
had its beneficial aspects. I can im- 
mediately recall Lagrange's proposed 
method for calculating derivatives by 
expanding functions in Taylor's series; 
thereby making a start on the theory 
of analytic functions. If he had known, 
as we now know, that most continu- 
ous function ("most" in the sense 
of the Baire category) have no deriva- 
tives anywhere in the interval of defi- 
nlition, might he not have been de- 
terred from proposing a method which 
he considered applicable to all contin- 
uous functions? 

To take a more recent case, con- 
sider the general "closed curve"; more 
specifically, a curve which is a com- 
mon boundary of two domains in the 
plane. There was more general interest 
in this topological configuration 65 
years ago than now, since both the 
Jordan curve theorem and Peano's 
space-filling curve had stimulated in- 
terest in plane curves. Although we 
now know quite simple examples of 
closed curves which have complemen- 
tary domains other than the two of 
which they are the common boundary 
(7), apparently around the turn of the 
century the common intuition was that 
there could be only two such domains, 
an "inside" and an "outside." Just how 
much influence the proving of the 
Jordan curve theorem had on this in- 
tuition we can only surmise. At any 
rate, Schoenflies, who had recently 
given such a proof and who could be 
considered an expert on the topology 
of the plane, as well as one of the 
principal founders of the topology of 
Euclidean spaces, published a number 
of results in which he took it for 
granted, as intuitively clear, that a 
closed curve could have only two 
complementary domains. Now this was 
bad, of course; but was its influence 
on the development of mathematics 
bad? I think not. For example, it evi- 
dently came to the attention of L. E. 
J. Brouwer, the "father" of modern 
Intuitionism, and inspired him to look 
into the validity of the assumption. 
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I surmise that this helped arouse Brou- 
wer's interest in topology (although 
that interest possibly had other stim- 
uli too), and that his classical work 
in this regard (giving counterexam- 
ples which included closed curves 
which are the common boundaries of 
an arbitrary countable number of do- 
mains) influenced his continuing inter- 
est in topology. In particular, it led 
to his interest in the topological in- 
variance of closed curves. In the proof 
of this, which he was the first to give, 
he started a chain of ideas which led 
to the extension of homology theory 
to general spaces. For several years 
thereafter he was quite active in this 
branch of mathematics, finding a num- 
ber of results which have become clas- 
sical (such as his fixed point theorems 
and work on mappings of locally Eu- 
clidean manifolds), and which were 
not fully appreciated in the mainstream 
of topology until over a decade later. 

Common Features of the Examples 

All three of the examples of collec- 
tive intuition that I have mentioned 
were false, yet it is difficult to believe 
that their influence was entirely bad. 
It is curious how much good mathe- 
matics can be done even when the col- 
lective intuition concerning basic mat- 
ters is false. This is most striking dur- 
ing the period preceding Weierstrass's 
example. For during that period the 
collective intuition concerning conti- 
nuity, existence of derivatives, infinite 
series, the real-number system, and a 
host of other fundamental concepts 
was at best faulty and usually full of 
error. Yet on such a basis much of 
classical analysis was built up. It would 
be quite as apt to speak of the "mod- 
ern miracle" as we do of the "Greek 
miracle." 

Speaking of the "Greek miracle" re- 
calls the classical crisis regarding com- 
mensurability. Here again, the collec- 
tive intuition regarding number and 
magnitude, according to which all 
magnitudes were commensurable, 
though false, was able to support the 
creation of much good mathematics. 
Moreover, the ultimate discovery of 
their true character led, in all these 
cases, to very fruitful periods of math- 
ematical activity. It is my individual 
opinion that they all represent natural 
phenomena in the evolution of mathe- 
matics. In each case, the evidence is 
strong that the discovery of the error 
in the basic intuition was about to 
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burst forth through the medium of sev- 
eral mathematical leaders, all working 
independently. In the case of the dis- 
covery of incommensurability, some 
have attributed it to Pythagoras him- 
self, others to Hippasus (a student of 
Pythagoras); but the truth is that no- 
body really knows. However, since 
the Pythagorean theorem had become 
known quite generally at that time, 
the incommensurability between the 
diagonal and side of a square could 
not have been long concealed, no mat- 
ter who first detected it. In the case 
of the parallel axiom, Gauss, Bolyai, 
and Lobachewski all discovered the 
facts at about the same time. We 
now know that Bolzano had an exam- 
ple similar to Weierstrass's. And about 
the same time that Brouwer found his 
example of a "pathological" closed 
curve, a Japanese mathematician, 
Wada, also apparently produced one. 
And no one knows how many other 
individual mathematicians were either 
working on, or had produced exam- 
ples, proving the faulty character of 
each of these collective intuitions. The 
discovery of the space-filling curve, 
which I mentioned above only inci- 
dentally, was evidently another typi- 
cal case. Parametric representation of 
plane curves had proved extremely use- 
ful, although evidently its introduction 
(possibly by Cauchy) was made under 
the influence of the intuitive belief 
that such curves would always be 
curves of the intuitively accepted kind 
-that is, having no "breadth" or "thick- 
ness." The usual pattern of events fol- 
lowed. After much good research based 
on the concept, almost simultaneously 
Peano, E. H. Moore, and Hilbert came 
up with examples showing that the in- 
tuition underlying the concept of para- 
metric representation was false (8). 
There followed a period of 40 years 
or so of research in plane topology 
and problems related to it. The pat- 
tern is quite typical. 

Role of Intuition in Evolution of 

Concepts 

What do these case histories indi- 
cate concerning the manner in which 
mathematical concepts evolve on the 
cultural level? I am asking this ques- 
tion with a twofold purpose in mind. 
Thus far I have recounted only cases 
in which the collective intuition was 
false-I have not given any cases 
where it was true-and mathematical 
intuition is not always wrong, fortu- 

nately. Consequently I would like to 
cite some cases where the intuition 
was correct; but at the same time I 
would like to consider how these cases 
dovetail, so to speak, with the former 
cases in forcing the formulation of 
new concepts. 

Let me begin with the most basic 
concept of all, namely number; more 
specifically, the "counting" or "nat- 
ural" numbers, 1, 2, 3, .... The 
Intuitionist philosophy regards the ori- 
gin of these to be in man's intuition 
of "fundamental series" of mental acts, 
consisting of a first act, a second act, 
a third act, and so on. I presume this 
must have been an intuition which was 
derived from the physical and cultural 
environment. More specifically-and 
this can be inferred from a study of 
the forms of primitive number-words, 
as well as of the practice of tallying 
--the use of one-to-one correspondence 
to compare collections of physical ob- 
jects, along with the repetitive charac- 
ter of the actual determination of such 
correspondences, built up a set of at- 
titudes which formed, ultimately, the 
intuition of fundamental series. And I 
presume this was an intuition on the 
cultural level, shared by virtually all 
who found it necessary to engage in 
the primitive forms of counting. Prob- 
ably an analogous kind of intuition 
was involved in the genesis of geome- 
try, where it became necessary to com- 
pare lengths and areas. All of this is 
very conjectural, of course, but it seems 
fairly representative of what occurred 
prior to those periods for which the 
historical records are more complete. 
And it is our earliest example of how 
correct intuition on the collective level 
serves to build the mathematical edifice. 

However, it was an intuition which 
finally led to concepts that produced 
the "Greek crisis"; and it was neces- 
sary for Eudoxus and his contempo- 
raries to create a new conceptual frame- 
work which, while containing the ma- 
jor part of the old, rejected the parts 
that had been found false. There fol- 
lowed that flowering of activity that 
we call the "Greek miracle," based 
on a new intuition of the number 
concept-the so-called geometric "mag- 
nitudes"-which permitted a further 
construction of mathematical theory 
atop the old of the Pythagoreans. Al- 
though couched in the language of 
geometry, this intuition comprised vir- 
tually a complete theory of the real- 
number system. Unfortunately, the 
course taken by Western culture pre- 
cluded further development of the 
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Greek intuition. And it was not until 

early times that activity in mathemati- 
cal analysis, based on the foundation 
laid by the Greeks and their successors 
(who added new symbolic representa- 
tions for number), brought to light the 
inadequacy of the intuition created by 
the work of Eudoxus. By the latter half 
of the 19th century, real analysis had 
reached a more precise formulation of 
the real-number continuum with the 
notion of set. The so-called "arithmeti- 
zation of analysis" by Weierstrass and 
others provided a new conception of 
the real continuum and made possible 
the theory of measure and the brilliant 
researches of the first half of the 
present century in both analysis and 

topology. 
But this new conception of the real 

continuum gave birth to a new intui- 
tion-that of the theory of sets. The 
work of Cantor was the classical for- 
mulation of this new intuition. Some of 
its faults were discovered early, in the 
guise of the set-theoretic contradic- 
tions. By now, the mathematical world 
had developed new standards of rigor, 
and it was realized that the remedy 
must be sought in a more precise for- 
mulation of the theory of sets. The axio- 
matic method, used by the Greeks to 
avoid the Zeno paradoxes and the 

commensurability assumption, was ap- 
proaching a new maturity and again 
offered a method for attaining the de- 
sired precision. For most ordinary pur- 
poses, axiomatic systems for set theory 
provided quite a satisfactory basis. But 
so far as a unique formulation of gener- 
al set theory is concerned, we are today 
in little better position than were the 
Pythagoreans with respect to geometry, 
or the early analysts with respect to the 
real continuum. Our knowledge of the 
axiom of choice, for instance, is pure- 
ly intuitive. We have an accumulation 
of good mathematics based upon its 
use, but we feel uneasy about its para- 
doxical consequences, such as the 
Banach-Tarski theorem (9). The same 
holds for the continuum hypothesis, 
although this is perhaps not so serious 
for most of us. It does serve as a re- 
minder, however, that our intuition of 
the real continuum was not thoroughly 
clarified by the work of Weierstrass 
and his contemporaries. They, of neces- 
sity, brought into being a new intui- 
tion-the theory of sets-and so long 
as this theory has only an intuitive 
base, so must all the mathematics de- 
pendent upon it. 

I think that there is only one con- 
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clusion that we can draw from all this, 
namely, that so far as mathematics be- 
ing ultimately based on intuition is 
concerned, the Intuitionists are correct. 
But the mathematical intuition, as I 
have used the notion, is not precisely 
that of Intuitionism; and, moreover, 
the methods which the majority of 
mathematicians use are not those of 
the Intuitionistic doctrine. 

But to summarize the role of the 
mathematical intuition in the evolution 
of mathematical concepts-our collec- 
tive intuition of basic concepts has 
grown by a series of discoveries of 
faulty features in the current concepts, 
with ultimate replacement by new con- 
cepts which not only clear up the 
faults, but lead to feverish activity on 
the new foundation with consequent 
creation of much good mathematics. 
Ultimately, the new concepts begin to 
reveal faults; in particular, we dis- 
cover that they have brought in with 
them new intuitions which have to be 
made more conceptually precise. And 
the cycle goes on. 

Role of Intuition in Research 

I come now to the role of intuition 
in research. The biographical com- 
ments in Poincare's writings, and the 
more complete work of Hadamard 
(10), embody a good account of how 
intuition works on the individual level 
in creative work. As I remarked be- 
fore, this is intuition which is of a 

highly specialized nature. It relates to 
the particular problem on which only 
the individual, or a few individuals, are 
working. It is true, of course, that in 
their background is collective intuition, 
and they are certainly influenced by it. 
In particular, their choice of the prob- 
lems on which they work is guided by 
what the collective intuition deems the 
most fruitful direction for research. But 
once having selected the particular 
problem, the individual begins to build 
new concepts and their resultant intui- 
tions. In a way, he repeats the experi- 
ence of the general mathematical cul- 
ture, but on a different level and at 
greater rates of change. His false intu- 
itions are usually recognized to be 
such in a relatively short time ("rela- 
tively short" can be as, much as sev- 
eral years, of course), and they are 

patched up by correct conceptual 
material. 

These remarks apply, too, in the 
case of problems that remain unsolved 

for many years and become "classi- 
cal." The experienced individuals may 
have stopped working on them, having 
found their efforts at solution frus- 
trated, and therefore have gone on to 
problems promising quicker results. I 
believe that what happens here is that 
the collective intuition in the field of 
a particular problem continues to grow, 
being passed on by the older workers 
to the younger. Ultimately, due to a 
combination of a more mature collec- 
tive intuition (which has been growing 
unnoticed), new methods, and individ- 
ual genius, someone (usually a young- 
er mathematician, relatively new in the 
field, and possessing a fresh individual 
intuition) is able to solve the problem. 
That feeling of awe, which I am sure 
many older creative mathematicians 
must get regarding the powers of the 
younger generation of creative workers, 
has a firm basis. The younger man 
has not only come into the particular 
field without having to clutter up his 
brain with concepts and methods which 
served their purpose and are now dis- 
carded, but using new concepts and 
methods he has built up an individual 
intuition which forms a platform from 
which he can regard his field of re- 
search with an eye undimmed by the 
recollection of earlier and faulty in- 
tuitions. The director of his first re- 
search has no stronger responsibility 
than that of guiding and steering this 
young intuition into the most up-to- 
date conceptual channels. It is almost 
a truism that without intuition, there 
is no creativity in mathematics. 

Role of Intuition in Teaching 

Like collective intuition, individual 
mathematical intuition is not a static 
but a growing thing. It starts develop- 
ing when we are children, during the 
time when we learn to distin- 
guish shapes and sizes (geometric in- 
tuition) and to count (arithmetic in- 
tuition). We are not born with it, for 
without a cultural basis for its develop- 
ment, there can apparently be no 
mathematical intuition. By the time 
the child starts school in our culture, 
however, he usually has some basis 
to build on-his parents have probably 
taught him to count, for example- 
and the continuing development of 
this basis undoubtedly forms one of 
the central responsibilities of primary 
teachers. 

By the time the student reaches high 
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school he should have a fairly substan- 
tial intuitive base from which to work. 
Presumably his teachers have used his 
arithmetic intuition to develop both 
higher arithmetic and algebra, and-af 
least under new curricular ideas-his 
geometric intuition, not only to devel- 
op elementary geometric facts but to 
aid in solving arithmetic and algebraic 
problems. And in this process, the 
teacher should have added to the in- 
tuitive base. In short, as the student 
comes to the high school teachers, his 
mathematical equipment should have 
two main components-the intuitive 
component and the knowledge com- 
ponent. These are difficult to separate, 
particularly since the intuitive compo- 
nent is dependent for its growth on 
the knowledge component. 

Perhaps I can make this clearer by 
stating my conception of what the 
new curricula being developed today 
should accomplish in contrast to the 
old, standard, mathematical curricu- 
lum. The old curriculum was designed 
chiefly for the knowledge component; 
the student was taught how to per- 
form arithmetic and algebraic opera- 
tions and how to prove theorems. But 
little conscious development of mathe- 
matical intuition took place; what there 
was of this seemed to find expression 
chiefly in the problems that were 
given to be solved. But insofar as these 
were mechanical repetition of the opera- 
tions or modes of proof that had been 
taught, they added little or nothing to 
the intuitive component. In contrast to 
this, the new curricula should try to 
turn teaching of the knowledge compo- 
nent into a process whereby the 
student's intuition is actually used and 
developed further in acquiring the new 
knowledge. 

For example, while under the old 
system the student was told the formu- 
la for carrying out a process, under 
the new he should be invited to do a 
little guessing as to what form the proc- 
ess should take. This guessing and 
the accompanying experimentation, re- 
sulting in a decision as to the final 
result, develops and strengthens his 
mathematical intuition. In an embryon- 
ic way, this procedure is precisely the 
same as that pursued by the research 
mathematician, and in my opinion the 
teacher who cultivates it is doing crea- 
tive teaching. And I believe that all 
concepts should be introduced in this 
way. To explain a concept to a stu- 
dent adds to his knowledge compo- 
nent, perhaps, but does. not strengthen 
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his intuition. Probably the worst exam- 
ple of this kind of thing is the writ- 
ing of a definition on the board, then 
explaining what it means and how it 
is used. 

For example, consider the mathe- 
matical induction principle. One can 
proceed by first writing it on the black- 
board in the form in which it is usual- 
ly stated, as an axiom; secondly, by 
explaining what it means; and thirdly, 
by showing how to use it in proof 
of simple arithmetic formulas. This is 
followed by homework in which the 
student applies the process much as 
a proof algorithm, imitating what the 
teacher has done. The brighter students 
will not have any trouble with this, 
perhaps, but the average ones will be 
beset by minor questions such as: 
"How do I find the (n + l)st term?" 
-questions which are largely due to 
the algorithmic character of what they 
have been taught. 

Now this kind of teaching is certain- 
ly not going to help the student rec- 
ognize, when he later comes to a prob- 
lem in which mathematical induction 
is a natural mode of proof or defini- 
tion, that the mathematical induction 
principle may be called upon. For 
while he may "know" mathematical 
induction he has not acquired any in- 
tuitive feeling for it. If, on the other 
hand, his teacher had given him credit 
for knowing how to count and having 
an intuition of "fundamental series," 
and if the teacher had proceeded from 
there to guide him to the discovery of 
the mathematical induction principle, 
then the student would have acquired 
not only a knowledge of the principle, 
but also an intuitive base for later 
recognizing instances when the prin- 
ciple could be applied. In this way, 
the intuition would be permitted to 
play its proper role in creative teach- 
ing. 

Perhaps most experienced teachers 
already use such creative teaching meth- 
ods, and they would not think of pre- 
senting a definition without first call- 
ing upon the student's intuitive powers 
to help formulate the definition. How- 
ever, two matters worry me: First, that 
they may find, under the pressure of 
crowding a certain amount of material 
into a given amount of time, that it is 
necessary to resort to the old mode of 
teaching which consists of (i) state- 
ment of the definition, (ii) explanation 
of it, and (iii) application of the con- 
cept to a particular problem. In dis- 
cussing the so-called "Moore method" 

of teaching-wvhich exemplifies much 
of what I have been saying-Moise 
commented that "sheer knowledge does 
not play the crucial role in mathema- 
tical development that most people sup- 
pose" (11). And a propos of the time 
lost in using the Moore method, he 
stated: "The resulting ignorance ought 
to be a hopeless handicap, but in fact 
it isn't; and the only way that I can 
see to resolve this paradox is to con- 
clude that mathematics is capable of 
being learned as an activity, and that 
knowledge which is acquired in this 
way has a power which is out of all 
proportion to its quantity." And in the 
second volume of Polya's recent book 
Mathematical Discovery (12), there is 
the quotation from the 18th-century 
German physicist Lichtenberg: "What 
you have been obliged to discover by 
yourself leaves a path in your mind 
which you can use again when the 
need arises." This is an expressive way 
of saying that you have added to the 
accumulation of your mathematical in- 
tuition. 

The second matter that worries me 
is related to the use of the axiomatic 
method in secondary school teaching, 
particularly where the function is that 
of definition. What I said before re- 
garding mathematical induction applies 
here. The student should not be intro- 
duced to a theory by means of axioms. 
Consider the arithmetic of integers. 
Here is a theory with which the stu- 
dent is already familiar, a circum- 
stance which makes it an excellent 
subject for a proper introduction to 
axiomatics. But before stating a single 
axiom, the teacher ought to respect 
the student's imagination enough to tell 
him something about the purpose of 
axiomatics. In particular, he should be 
told that one wishes to seek out cer- 
tain specific aspects of the arithmetic 
of integers from which the other as- 
pects can be derived; for having done 
so, then not only can one test the ac- 
curacy of an operation against the 
axiomatic base, but one can also try 
out one's imagination by finding models 
for all or some of the axioms other 
than that of the arithmetic of integers 
-as, for example, the arithmetic of 
rationals, elementary algebra, and the 
like. 

After having decided to try to list 
axioms, the student should be encour- 
aged to discover suitable axioms him- 
self-under the guiding hand of the 
teacher, of course. It should go with- 
out saying, however, that if these mat- 
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ters are too advanced to be compre- 
hended by the student, then the axio- 
matic method should not be introduced 
at all. Nor should axioms be sneaked 
in under the guise of so-called "laws" 
presumably handed down by some ob- 
scure mathematical Moses. 

Most of this applies, I believe, to 
college teaching-certainly up to the 
end of the first two years of college. As 
the student goes on to more advanced 
work, the intuitive component of his 
training begins to assume more impor- 
tance. At this stage of his career it 
may be assumed that he is possibly 
going on to do some kind of creative 
work, if not in mathematics, then in 
some other science. And it is desirable 
that his teachers have had some exper- 
ience with creative work. This does 
not mean that the teacher must have 
a Ph.D. degree; this is a fetish I wish 
we could get rid of. I would much 
prefer a teacher without a Ph.D. who 
is excited about mathematics and can 
teach creatively, than a teacher with 
a Ph.D. who is neither enthusiastic 
about mathematics nor capable of in- 
spiring his students. Naturally, as the 
student progresses into graduate work, 
most of his teachers will, as a matter 
of course, have Ph.D.'s, since they 
should themselves, either be doing 
creative work, or at least have done 
sufficient work to realize the role of 
intuition in such work and the im- 
portance of using methods that will 
develop it. The student in the graduate 
stage should be capable of adding to 
his knowledge component on his own; 
his mentor's responsibility is chiefly 
to nourish his mathematical intuition, 
for it is this that is going to be of 
greater importance in his career as a 
mathematician. 

Summary 

"Intuition," as used by the modern 
mathematician, means an accumulation 
of attitudes (including beliefs and opin- 
ions) derived from experience, both in- 
dividual and cultural. It is closely asso- 
ciated with mathematical knowledge, 
which forms the basis of intuition. This 
knowledge contributes to the growth 
of intuition and is in turn increased 
by new conceptual materials suggested 
by intuition. 

The major role of intuition is to 
provide a conceptual foundation that 
suggests the directions which new re- 
search should take. The opinion of the 
individual mathematician regarding ex- 
istence of mathematical concepts (num- 
ber, geometric notions, and the like) 
are provided by this intuition; these 
opinions are frequently so firmly held 
as to merit the appellation "Platonic." 
The role of intuition in research is 
to provide the "educated guess," which 
may prove to be true or false; but in 
either case, progress cannot be made 
without it and even a false guess may 
lead to progress. Thus intuition also 
plays a major role in the evolution 
of mathematical concepts. The advance 
of mathematical knowledge periodical- 
ly reveals flaws in cultural intuition; 
these result in "crises," the solution 
of which result in a more mature in- 
tuition. 

The ultimate basis of modern math- 
ematics is thus mathematical intuition. 
and it is in this sense that the Intui- 
tionistic doctrine of Brouwer and his 
followers is correct. Modern instruc- 
tional methods recognize this role of 
intuition by replacing the "do this, do 
that" mode of teaching by a "what 
should be done next?" attitude which 

appeals to the intuitive background al- 
ready developed. It is in this way that 
understanding and appreciation of new 
mathematical knowledge may be prop- 
erly instilled in the student. 
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