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Inverse Compton Effect: Some Consequences for Quasars 

Abstract. The inverse Compton effect can transform enough energy of rela- 
tivistic electrons into radiation so that an upper limit to the mean energy of 
the electrons is set. In quasars, the limit is too small to allow the production of 
any appreciable amount of synchrotron or inverse Compton radiation, unless 
either the distances are not cosmological or the lifetimes of the relativistic elec- 
trons are extremely short, of the order of hours. 

The inverse Compton effect increases 
the energy of photons by collisions of 
the photons with high-energy electrons. 
If the energy transfer caused by each 
collision is too large, then the radia- 
tion density and accordingly the Comp- 
ton losses will grow continuously. This 
growth is stopped by the breakdown 
of the energy stored in the relativistic 
electrons. Thus the mean energy of the 
electrons is reduced below a critical 
value; the characteristic time is < R/c 
(R, radius of the quasar). This holds 
even when energy is continuously re- 
supplied. Therefore, the inverse Comp- 
ton effect limits the possible mean en- 
ergy of the relativistic electrons and 
thus puts restrictions on quasar mod- 
els. 

By E, (in metric units) and ye (in 
units of the rest energy m .c2 of the 
electrons) we denote the energy of in- 
dividual relativistic electrons, while E 
and -y (without subscript) are the mean 
values averaged over all relativistic 
electrons. 

The total radiation power of an elec- 
tron of energy E, - mOc2ye as it is 
scattered by low-energy photons of 
radiation -density U is (1) 

p0=4cro y2U/3 (1) 

where o-o = 6.10-25 cm2, which is the 

Thompson cross section. If U contains 
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photons of frequencies up to the ultra- 
violet, the formula is valid for 30 < 
Ae < 104 and may be used for approxi- 
mations also with higher values of ye. 
If we replace the mean radiation power 
P, = P, (y ) by the corresponding 
Compton luminosity L, = 4rR3N(P(,/ 3 
(which is possible only if L, is ap- 
proximately constant within a time of 
the order of RIc), then 

L -- 4 Rco- N, 2 L/3 (2) 

N. is the number density of relativistic 
electrons, and L - 4rR2 c U/3, the 
total luminosity. If we write L - Lt 
+ Ls + Le (Lt denoting a possible 
thermal component, L, the synchrotron 
component), it is obvious from Eq. 2 
that the inequality 

4 Rao N, _y2/3 - (La4 + L,)/L _ 1 (3) 

must hold. As long as the left-hand 
side is > 0.5, the inverse Compton effect, 
as compared to the synchrotron mech- 
anism and any thermal emission, is 
dominating. 

The mean lifetime of the relativistic 
electrons, defined as the time in which 
half of the energy is lost by radiation, 
is -r - E/P, where E = mO c2 y is the 
mean electron energy, and P = P, + P8. 
Here, P8 denotes the mean radiation 
power due to synchrotron emission. 

From Eq. 3 it follows that 

A 3(L +L8) - 3 
4RaoNeyL 4Ro-oLNe 

4 7rR3 Ne (P0 + P,) mo c2 

3 r P 
7rR mo c3 R 

ao-L C r 

L cannot be measured directly but has 
to be calculated from the observed 
intensity by means of an assumed pho- 
tometric distance, Da. If D is the real 
photometric distance, the actual lumi- 
nosity differs from the calculated one 
by a factor (D/Da)2. 

With typical values for quasars: 
R = 1017 cm, L = 3.1046 erg per sec- 
ond (luminosity calculated from a cos- 
mological interpretation of the red 
shifts) 

y ? 0.5 (D/D,)-2 (rc/IR)- (5) 

On the other hand, the fact that 
nonthermal radiation is emitted by 
quasars gives a lower limit for y. In 
order that any appreciable amount of 
synchrotron or inverse Compton radia- 
tion be emitted at all, it is necessary 
that y > 30. Furthermore, in order that 
energy be emitted in a frequency 
range of several orders of magnitude it 
is probable that y has a still higher 
value, at least of the order of 102. It 
is impossible to give a definite estimate 
of y without using more detailed char- 
acteristics of the radiation spectrum. 
In any case, the upper limit of y given 
by Eq. 5 must exceed the lower limit, 
and therefore at least one of the fac- 
tors in Eq. 5 should be appreciably 
larger than unity. In other words, in a 
";cosmological" quasar model with large 
electron lifetimes the mean electron 
energy would be limited by Eq. 5 to 
an, impossibly small value. This con- 
clusion is independent from whether 
or not the major part of the radiation 
is due to the inverse Compton effect. 
So we are left with two possibilities. 

The first is that the assumed dis- 
tances are too large. Terrell's hypoth- 
esis (2), of a gigantic explosion in the 
Milky Way some 107 years ago reduces 
the distance by a factor of about 103. 
By use of this factor in Eq. 5, it fol- 
lows that the mean lifetime of the 
relativistic electrons may be apprecia- 
bly larger than Ric, but should not 
exceed a few hundred years. 

Under tlhe second possibility we as- 
sume that the cosmological interpreta- 
tion of the red shifts is correct. Then 
it follows that the lifetime of the rela- 
tivistic electrons must be extremely 
short, of the order of minutes to hours. 
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In this case, the relativistic electrons 
are created in situ, that is, at any 
place within the quasar where the radi- 
ation is generated. This makes it likely 
that the relativistic electrons (and posi- 
trons) are secondary products of high- 
energy protons. The total energy out- 
put is now solely determined by the 
creation rate of the relativistic elec- 
troins and positrons. A magnetic or 
radiation field, or both, may only in- 
fluence the spectral distribution of the 
radiation. 

These two alternatives were also ob- 
tained by Hoyle, Burbidge and Sar- 
gent (3), who used the observed spec- 
tral characteristics of the quasar radia- 
tion in their analysis. 

The lifetime -r of individual electrons 
is proportional to 1/ye and is connected 
with the mean values r and y by 

-e = // (6) 

If we combine this equation with Eq. 

5 then it follows that within the cos- 
mological hypothesis the individual life- 
times are smaller- than RIc for all 
electrons whose energy is high enough 
to contribute to the nonthermal radia- 
tion (ye > 30). The reason is that the 
actual lifetime must be still smaller than 
the lifetime due to Compton radiation 
alone, which itself is smaller than RIc 
for all sufficiently large values of ye. 
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Crystal Structure of Kernite, Na2B406(OH)2 * 3H20 

Abstract. Kernite, Na B4O6(OH)2 3H20, contains parallel infinite chains of 
the borate polyanion [BO,,6(OH)2,]2n--. The chains are composed of six-mem- 
bered rings containing one boron-oxygen triangle and two boron-oxygen tetra- 
hedra. The rings are linked through commonly shared boron-oxygen tetrahedra. 

The mineral kernite is a member 
of the borate group Na2O * 2B203 
nH20 where n = 0, 1, 2, 4, 5, and 
10. Of this group, only the structure 
of the decahydrate (borax) is known 
(1). The borax polyanion consists of 
two boron-oxygen triangles and two 
boron-oxygen tetrahedra which share 
corner oxygens. By analogy to other 
hydrated borate systems, it was 
thought that the lower hydrates would 
be 'formed by polymerization of the 
borax anion in-to chains or other three- 
dimensional arrangements, with the 
removal of H20 (2). In addition, 
Christ and Garrels (3) suggested that 
in kernlite the borax polyanion had it- 
self been altered. The structure of kern- 
ite (n - 4) has now been solved, and 
the result substantiates these ideas. 

The structure was solved with the 
use of approximately 1800 x-ray dif- 
fraction intensities. A General Electric 
XRD-6, equipped with a scintillation 
counter and CuKa radiation monochro- 
matized by a balanced pair of Ni and 
Co filters, was used for these measure- 
ments. The symbolic-addition method 
of Karle and Karle (4) yielded direct- 
ly the phases of 225 of the largest 
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normalized structure factors. I com- 
puted a three-dimensional Fourier 
map using the phases so determined 
and the normalized structure factors 
which revealed 14 of the 17 nonhy- 
drogen atoms in the asymmetric unit. 
Refinement proceeded with least- 
squares techniques and a difference 
electron-density map for the location 
of the three missing atoms. The pres- 
ent residual factor is 0.10 for all re- 
flections. The relevant crystallographic 
data for kernite and a list of atomic 
coordinates at the present stage of 
refinement are shown in Table 1. An 
anisotropic temperature-factor refine- 
ment is in preparation. 

The average distances between B 
and 0 in the polyanion are 1.37 A 
in the triangles and 1.48 A in the 
tetrahedra. The Na+ ions are sur- 
rounded by six oxygens in an irregular 
manner. The Na+-coordination poly- 
hedra share some edges and corners 
to form a three-dimensional network 
around the anions. The average 
Na-O distance is 2.41 A. 

The borate polyanion in kernite 
consists of six-membered boron-oxy- 
gen rings which share tetrahedral 

boron atoms. These form infinite 
chains which extend in the b direc- 
tion, two in each unit cell. Because 
of the manner in which the rings 
share boron atoms the plane of each 
successive ring is approximately 900 
to the plane of the preceding ring. 
Since the shared boron atoms are ad- 
jacent in each ring, the chain forms 
a spiral in the direction of the b-axis. 
From a projection of the polyanion 
viewed down the a-axis (Fig. 1.) all 
the oxygen atoms take part in bonding 
between boron atoms, except for the 

Table l. Atomic coordinates for kernite 
Na2B4O (OH)2. 3H1O. Monoclinic P21/c: 
a = 7.0172?0.0006; b 9.1582-+?0O "6; c = 
15.6774+.0015 A; -108.861?+.002?; cell 
volume -a 953.4 A8; z = 4; density - 1.93 
(calc.), [(obs.) 1.91 g cm-'-. 

Coordinates 
Atom (in- fractions of cell edges) 

x y z 

Na, 0.319 0.465 0.311 
Na2 .186 .367 .072 
01 .511 .025 .397 
02 .440 .099 .241 
03 .768 .205 .269 
O', .465 .351 .209 
05 .792 .448 .215 
0v (OH) .064 .290 .240 
07 (OH) .585 .295 .011 
08 (H20) .774 .034 .067 
09 .565 .272 .362 
Oo (H20) .037 .062 .414 
01, (H2O) .167 .117 .077 
B1 .552 .167 .421 
B2 .552 .232 .269 
B3 .572 .481 .200 
B4 .866 .315 .243 

5 
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Fig. 1. Projections of the borate poly- 
anion [B4O4O0H)2],w2'- viewed along the 
a-axis. The small circles are boron atoms; 

the large circles are oxygen atoms, ex- 
cept for the circles at Nos. 6 and 7 
which are hydroxyl groups. The number- 
ing conforms to Table 1. 
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