
ture of liquid nitrogen with an x-band 
Varian spectrometer, a magnetic field 
of from 0 to 4000 oersteds, and a 

powder sample of 0.2 g. The work 
of Jen et al. (6) on ESR of alkali atoms 
in inert-gas matrices indicates that, ow- 
ing to hyperfine interaction of the 6s 
electron of cesium with the magnetic 
field of the nucleus, cesium should give 
lines near 800, 2450, 4200, and 5700 
oersteds. A few very weak lines were 
observed, but none were observed at 
these fields. It is thus unlikely that the 
observed lines are due to the unpaired 
electron in neutral cesium. 

Measurements of magnetic suscepti- 
bility as ia function of temperature 
have been made (by Thorpe) and 
show that rhodizite is diamagnetic 
rather than paramagnetic (Fig. 1). 
The experimental magnetic susceptibil- 
ity at infinite temperature is -0.40 X 
10-6 emu/g, a value in good agree- 
ment with the calculated value (5) of 
-0.44 X 10-6 emu/g for the follow- 
ing formula, and in better agreement 
with Ito's analysis (2), in which the 
alkali atoms are present as ions: 

(Cso..41Ko.alRbo.GINao.03 
lo.O(;)B11Be4Al4026(OH)2 

The slope of the line of susceptibility 
plotted against 1/T does indicate the 
presence of a small amount of para- 
magnetic impurity. This slope corre- 
sponds to a magnetic moment of 0.19 
Bohr magneton, whereas the magnetic 
moment of the unpaired electron in a 
neutral cesium atom would be 1.7 Bohr 
magnetons. The number of spins being 
proportional to the square of the mo- 
ment, there are only (0.19)2/(1.7)2 or 
about 1.5 X 10-2 as many unmatched 
spins in rhodizite as there would be if 
neutral cesium atoms were present in 
the formula. 

Ito (7) has confirmed that water is 
retained to a high temperature. The 
quantitative determination of OH- is 
complicated by the concomitant partial 
loss of B203 on heating. Ito's recent 
analytical work, not yet completed, in- 
dicates that at least one, but less than 
three, hydroxyl groups are present in- 
stead of four as reported (2). The dif- 
ferent values given in the literature for 
the latomic ratio of total oxygen to 
boron in rhodizite emphasize the ana- 
lytical problem, namely, 2.70 (8); 2.64 
or 2.50 (2); 2.33 (1). A formula such 
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nnay) on The many descriptions and illustra- 
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ported by as to their characteristic regularity, 
-serve the preference for relatively protected 
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its length exceeds 27rr, and that it then 
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llen (Aka- of the cylinder (2). The ratio of the 
zig, ed. 3, 

average length of individual segments 
for suggest- to the diameter of the cylinder, how- 
eriment and 
of his ESR ever, also varies. For a cylinder of oil 
Frondel for 4 mm in diameter in a mixture of 

alcohol and water of the same density, 
Plateau (3) found the ratio (segment) 
length: diameter to vary from 15.5 to 
16.7. 

A breaking wave, of course, ap- 
proximates a cylindrical form and, at 
the instant of collapse, it may shoot for- 

miliar to ward a regularly spaced array of jets 
les, occur (4) that correspond to the segmentation 
I with the of the cylindrical rim specified by Pla- 
laracteris- teau's rule. Waves do not ordinarily 
view) as break directly against the beach, but 

linear ar- somewhat offshore as frictional drag 
deltoidal against the bottom produces oversteep- 
seaward- ening and collapse. Where the profile of 
by equal- equilibrium has been steepened as a re- 
I depres- sult of rearrangement of materials by 
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Fig. 1. Westward view of beach cusps on Emma Wood State Beach, 5 km west of 
Ventura, Calif., 28 November 1965. The cusps have an average spacing of about 24 m; 
the waves that made them were estimated to have been 1.2 to 1.5 m high. 

Fig. 1. Westward view of beach cusps on Emma Wood State Beach, 5 km west of 
Ventura, Calif., 28 November 1965. The cusps have an average spacing of about 24 m; 
the waves that made them were estimated to have been 1.2 to 1.5 m high. 

onto the beach, so as not to produce 
longshore drift and erosion, such more 
or less straight-on action commonly re- 
sults in an array of beach cusps that 
persist until destruction by a change of 
regimen, such as a rise in the tide, an 
increase in the height of waves, or de- 
velopment of longshore currents. 

In bodies of water that are free from 
tidal effects, the cuspate structure may 
last longer and show a clearer relation 
to beach ridge or berm than it does on 
the usual marine beach. Where cusps 
form, they develop rapidly; and forma- 
tion of a new set of cusps quickly ob- 
literates an older one. 

From many probable sources I have 
sought measurements that could be 
used to check the supposition that 
beach cusps may be a function of the 
segmentation of the cylindrical wave 
form against the beach according to 
some ratio consistent with Plateau's 
rule. Many measurements of cusp 
spacing are available, but few are ac- 
companied by measurements (or even 
estimates) of the height of the waves 
that produced the cusps. Many ex- 
amples have also been given-of the var- 
iation in distance between cusps along 
the same beach (5); the variation may 
be considerable, yet the spacing between 
cusps tends to hover around a mean 
for any given beach and time. 

A few examples in which wave 
height and mean spacing between cusps 
were known or could be estimated (5, 
6) seemed to indicate a cusp-length: 
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wave-height ratio of about 16 to 20. 
Longuet-Higgins and Parkin (7), how- 
ever, have plotted nine measurements 
that suggest a ratio of only about 10- 
but with increase for the lowest 
waves. They find a closer relation be- 
tween cusp spacing and swash length, 
but then swash length is related to the 
volume and velocities of water surging 
up the beach and thus also to segmenta- 
tion of the cylindrical wave form. Rus- 
sell and Mclntire (8) have observed 
that occasional large waves may be 
more important than waves of prevail- 
ing height in shaping beach cusps; de- 
viation from a straight-line relation be- 
tween cusp-spacing and the observed 
height of waves may partly relate to 
this fact. 

These all-too-few observations are 
consistent with but do not prove the 
hypothesis that beach cusps form in re- 
sponse to the nearly regular segmenta- 
tion of the cylindrical wave form against 
the beach, as predicted from Plateau's 
rule, but with local complications due to 
hydrodynamic variations and beach reg- 
imen. If this hypothesis were true, the 
average spacing of beach cusps would 
reflect the height of the waves that 
produced (or is producing) them-a 
relation that, if it could be expressed 
more precisely, would contribute to the 
synoptic study of coastal conditions. 

I hope that this suggestion will bring 
out, or lead to the making of, more 
and better measurements of the ratio of 
the spacing of beach cusps to the height 
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of waves responsible for them, and of 
other, possibly related, variables that 
may indicate whether there is or is not 
a clustering of points along a curve 
corresponding to some function of 
Plateau's rule. 
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Ultrasonic Sensitivity: A 

Tympanal Receptor in the Green 

Lace Wing Chrysopa carnea 

Abstract. Chrysopa carnea can per- 
ceive ultrasonic frequencies up to at 
least 100 kilohertz modulated at pulse 
repetition rates as rapid as 150 per 
second. The receptor sites are a bi- 
lateral pair of small swellings in a 
vein of the fore wings. 

In conjunction with his studies on 
behavioral reactions of flying moths 
to simulated ultrasound of bats, Roeder 
(1) observed that green lacewings also 
responded to ultrasonic pulses. Previous 
anatomical studies on Chrysopa carnea 
Stephens (C. vulgaris Schneider) (2, 3) 
have revealed a swelling at the base 
of the fused radial and anterior-median 
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Tympanal Receptor in the Green 

Lace Wing Chrysopa carnea 

Abstract. Chrysopa carnea can per- 
ceive ultrasonic frequencies up to at 
least 100 kilohertz modulated at pulse 
repetition rates as rapid as 150 per 
second. The receptor sites are a bi- 
lateral pair of small swellings in a 
vein of the fore wings. 

In conjunction with his studies on 
behavioral reactions of flying moths 
to simulated ultrasound of bats, Roeder 
(1) observed that green lacewings also 
responded to ultrasonic pulses. Previous 
anatomical studies on Chrysopa carnea 
Stephens (C. vulgaris Schneider) (2, 3) 
have revealed a swelling at the base 
of the fused radial and anterior-median 
veins in each fore wing. The dorsal 
wall of this enlargement is composed 
of a thick cuticle, while its ventral 
surface is membranous. Associated with 
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