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Fig. 2. Synthesis of compound I. 

retention time 13.5 to 16 minutes; 1.5 
mg of pure compound II was collected. 
A small portion (25 jug) of compound 
III was chromatographed again for bio- 

assay under the following conditions: 
4 percent Ucon polar on Chromosorb 
G; aluminum tubing, 3 m by 0.3 cm; 
column temperature, 110?C; detector 
temperature, 130?C; 7 cm3 of He per 
minute; retention time 54 to 58 minutes. 

Evidence for the identity of com- 

pound I has been presented (2). 
The mass spectrum of compound II 

showed the following diagnostic peaks 
(mass/charge, nme): 152 (P), 137 
(P--CHG), 134 (P-H,,O), 119 (P-33). 
The base peak was 43. The infrared 

spectrum (CC14 solvent) showed the 
following diagnostic peaks (i)): 2.98 

(OH), 6.04 (C=C), 9.65 and 9.90 
(C-OH), 7.27 [notched, C(CH3) ]. 
The nuclear magnetic resonance (NMR) 
spectrum (CC14, r) was: 4.73 (broad- 
ened, =CH), 5.71 (broadened, CHOH), 
7.5 to 8.2 (multiplet, four protons), 8.30 

(singlet, -C-CH3), 8.68 (singlet, CH.), 
8.77 (singlet, OH), 8.97 (singlet, CH). 
The ultraviolet spectrum (hexane) was: 

X 215 m,t, e 4000; optical rotation (0.1 
percent in acetone): [all21 - + 4 ? 3?, 
and the melting point was 69?C. 

The mass spectrum of compound III 
showed the following diagnostic peaks: 
152 (P), 134 (P--H,O), 119 (P-CH,-- 
H,O), 85 (adjacent to OH, allylic to 
two double bonds, base peak). The in- 
frared spectrum (film, Ix) showed: 3.02 
(OH), 6.26 (conjugated C=-C), 9.80 
(C-OH), 10.08 and 11.10 (CH=CH.). 
The NMR spectrum (CDC13, r) was 
3.63 (=C-CH=CH2, two pairs), 4.6 
to 5.1 (multiplet, five olefinic protons), 
5.52 (multiplet, CHOH), 7.61 (appar- 
ent doublet, CH,), 8.30 and 8.34 (each 
split by small allylic coupling, two CH. 
groups), 8.40 (OH). In acetone (K2CO0 
added), the OH peak was found as a 

sharp doublet (J, 5 cy/sec) at 6.75, 
and the apparent doublet of the CH2 
group became a multiplet. Decoupling 
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was: A 226 mIu, e 15,000, and the optical 
rotation (1.0 percent in methanol): 
[oa]D2 = + 10 ? 0.9?. 

Compound I was synthesized by the 
sequence shown in Fig. 2. Compound 
II was synthesized by NaBH4 reduction 
of (-) -verbenone, and compound III 

through the sequence depicted for com- 
pound I, with the use of blocked P,t- 
dimethylacrolein. 

The mass, infrared, NMR, and ultra- 
violet spectra of the synthesized samples 
were congruent with those of the re- 

spective isolated compounds. 
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Events leading to sexual fertility 
in the higher Basidiomycetes include 

reciprocal nuclear exchange and nu- 
clear migration, nuclear pairing, con- 

jugate division, and hook-cell for- 
mation and fusion (1). In tetrapolar 
forms, typified iby Schizophyllham 
communle, this sequence of events is 

regulated by an incompatibility sys- 
tem composed of two series of fac- 
tors, A and B, each of which is con- 
stituted of two linked loci, Aa-A43 
and Ba-Bf, with multiple alleles (2). In 
either series of factors, A or B, each 

unique combination of specific al- 
leles at the a and 3 loci determines 
a distinct factor that is compatible 
with all others of the series. A homo- 

karyotic strain carries an A factor 
and a B factor; mating to initiate 
ithe entire sequence in a fertile 

heterokaryon, the dikaryon, occurs 

only between strains having neither 
factor in common (A#B#). Matings 
between strains having one factor 
(A#B= and A=B#) or both factors in 
common (A=B=) lead to the establish- 
ment of three distinct infertile hetero- 
karyons. The major characteristics 
of the four types of heterokaryons, 
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as related to the incompatibility fac- 
tors, are listed in Table 1. 

Mutations in the incompatibility 
loci were first reported in 1960 in 
S. com?mune (3, 4, 5) and Coprinus 
lagopus (6); 20 such mutations have 
now been characterized. All are lo- 
cated in the A3 and B,/ loci, and 
each results in loss of the factor's nor- 
nral discriminatory functions of self- 

recognition and self-sterility. This loss 
simulates the presence of two different 
normal factors of the same series and 
makes the homokaryon a. mimic of the 

corresponding common-factor hetero- 

karyon. In 1965 another mutation was 
detected (5), a secondary mutation, 
B/32(1-1), derived from a primary 
mutation, B/32(1), found earlier in 
the B,82 allele of S. commune (4). 
(The first number in parentheses is 
the code number of a primary muta- 

tion; a second number, when present, 
is the code number for a mutation 

generated from a primary mutant al- 

idle.) Thisl secondary mutation was 

morphologically normal, was capable 
of self-recognition, and had a new 
allelic specificity; it differed, how- 

ever, from wild-type factors in that 
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in the B Incompatibility Factor 

Abstract. Two new zmutations in the B factor of Schizophyllum commune 
provide additional indications rega rding control by the incompatibility factors 
of mating and sexual morphogenesis in this and other tetrapolar fungi. 
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reciprocity of nuclear migration in 
the mating response was dependent 
on the Ba allele of tlhe B factor in 
the mate. 

Recently two new mutations in- 
duced by x-ray were recovered by 
selective methods (4, 5). The muta- 
tions were derived from: (i) a homo- 
karyon carrying B2, a nonrecombin- 
ing B factor, (7) and thus of un- 
known allelic constitution; and (ii) 
a homokaryon carrying the primary 
mutation of Bp/2(1) (4). Both muta- 
tions were mapped in the B factor, al- 
though only the mutation derived from 
the primary mutation, hereafter desig- 
nated B/32(1-2), could be mapped in 
a specific locus; for their characteristics 
and progenitors, see Table 2. 

The new primary mutation, B2mut, 
resembles Bf/2(1) in causing abnor- 
mal nuclear distribution in the homo- 
karyon to mimic that of the A=B# 

heterokaryon; it differs, however, in 
three important characteristics: (i) 
It has lost the ability to regulate 
nuclear migration and hook-cell fu- 

Table 1. Morphogenetic effects as related to the 
leading to heterokaryosis. 

sion; (ii) it elicits the formation 
of pseudoclamps, a function normal- 
ly controlled by the A factor; and 
(iii) it retains the allelic specificity 
of its progenitor. The uninduced op- 
eration of a system normally requir- 
ing two different B factors (nuclear 
migration), and the induction of a 
step usually elicited by two different 
A factors, that is, hook-cell forma- 
tion (1), imply that close similarity 
exists between the products of the 
A and B incompatibility factors. 
Furthermore, it appears that specific- 
ity of the B factor is determined 

by a minimum of two active sites. 
This type of mutation supports 

the currently preferred model for the 
mode of action of the system (1); 
the model postulates repression in the 
homokaryon of the genes, implicated 
in the sexual progression, by a com- 
plex formed by the products of the 
a and p loci of the incompatibility 
factors. Derepression is achieved by 
a competitive interaction between 
the products of unlike alleles, of a or 

incompatibility factors in mycelial interactions 

Hetero- Nuclear Conjugate Hook-cell 
karyon Migration Pairing division Formation Fusion 

A B= No No No No 
A =B# Yes No Yes No 
ABB = No Yes Yes* Yes No 
A#B7# Yes Yes Yes Yes Yes 
* Only in the apical cells. 

Table 2. Morphological and mating characteristics of mutants and their progenitors. SS, simple 
septa; PC, pseudoclamps; TC, true clamps. 

Geno- Homo- Septal type (%) Nuclei per cell (%) 
tee karyotic Mating competence e 

morphology SS PC TC 0 1 2 3-25 

Bfi2* Normal 100 0 0 10 81 7 2 Self-sterile; accepts nuclei 
from Bp32(1). 

Bp2(1)* A=B# 98 2 0 53 23 10 14 Self-fertile; compatible 
with all factors, including 
its progenitor, but accepts 
nuclei from no strain. 

Bp2(1-1) Normal 100 0 0 7 88 3 2 Self-sterile; accepts nuclei 
only from strains hetero- 
allelic for Ba; donates nu- 
clei to any strain with a 
different B. 

Bp2(1-2) Normal 100 0 0 10 85 5 0 Self-sterile; neither ac- 
cepts nor donates nuclei 
to strains carrying com- 
mon-Ba with any Bp. 

B2t Normal 100 0 0 9 86 4 1 Self-sterile; does not ac- 
cept nuclei from B2mut. 

B2mut A#B= 45 40 15 42 22 8 28 Self-fertile; accepts nuclei 
from its progenitor; does 
not dikaryotize its pro- 
genitor. 

* From (8). t Allelic constitution unknown (see text). 
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Table 3. Mating interactions between primary 
and secondary mutations and wild-type B 
factors. Signs + and - denote compatibility 
and no reaction, respectively; com-B, com- 
mon-B reaction. Symbols left and right of a 
diagonal specify responses of strains at left 
and above, respectively. 

Allelic constitution of wild-type 
Genotype B factors 

B a3-/32 B a3-pl B a2-,p2 

B a3-f2 com-B + / + + / + 
B a3-2(1) -/+ -/+ -/+ 
B a3-32(1-1) -/+ -/+ +/+ 
B a3-/32(1-2) com-B com-B +1/+ 

of /3 loci of the interacting strains, 
to form a--a or f--/3 complexes. Ac-. 
cording to this model, the site for 
self-recognition was not affected in 
this mutation, whereas an alteration 
at a different site derepressed certain 
functions that are normally repressed 
in the homokaryon. 

The secondary mutation B32(1-2), 
derived from the primary Bf32(1), 
has regained normal morphology and 
self-sterility but has lost ability to 
interact with any B/3 allele; conse- 
quently it is intersterile with all B 
factors having a common Ba. The dif- 
ference between the mating interac- 
tions of this secondary mutation and 
those of one reported (6) is shown 
in Table 3: whereas Ithe latter is as- 
sumed to exclude nuclei containing 
a common Ba due to a preexisting 
state of the cytoplasm (5) that leads 
to superrepression of its system, the 
new mutation appears nonfunctional 
at the B,p site implicated in the 
Bf--Bp/ interaction during mating. 

Y. KOLTIN 
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