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The past 20 years have seen a great 
increase in the number of mathema- 
ticians and a noticeable flourishing in all 
branches of mathematics. Many new 

techniques have been devised, and 

many important unsolved problems 
have been settled. Mathematical tech- 

niques and ideas have permeated not 

only the natural sciences but also the 
social sciences, and even the manage- 
ment of large business organizations. 
Because of the belief that mathematics 
is vitally important for our technology 
and for the development of our society, 
the government has supported an in- 
crease in mathematics research and has 

sponsored attempts to improve mathe- 
matics education. 

The past few years, however, have 
seen a growing disillusion, not so much 
with mathematics as with mathemati- 
cians. The signs are small but signifi- 
cant. A few years ago the employment 
ads in the New York Sunday Times 
contained many requests for mathema- 
ticians. Today they ask for program- 
mers or for systems analysts instead of 
mathematicians. At many universities 
the science and engineering depart- 
ments insist that their students are not 
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being taught the mathematics they 
need, and they claim that the solution 
is to have separate mathematics depart- 
ments in the engineering colleges. Simi- 
lar criticism comes from my colleagues 
in physics, who tell me that when they 
have a differential equation to solve, or 
a contour integral to evaluate, they 
know it is useless to go to the mathe- 
matics department for help. R. W. 
Hamming says in Science (1) "much 
of modern mathematics is not related 
to science but rather appears to be 
more closely related to the famous 
scholastic arguing of the Middle Ages." 

The continual complaint of these 
people reduces to this: "where is math- 
ematics going and what are mathema- 
ticians doing?" This query comes not 
only from mathematically unsophisti- 
cated laymen but also from mathemati- 
cally sophisticated and technically 
trained people. I recall a question once 
asked me by a well-known physicist. 
In the course of a discussion about 
mathematics he expostulated, "I have 
studied and used mathematics all my 
life. I have known some of the great- 
est mathematicians, such as John von 
Neumann and Hermann Weyl. Yet 
when I try to understand, just in a 

general way, not in detail, what some 
of your young colleagues are doing, I 
find myself baffled. I'm not a mathemat- 
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ical ignoramus. Can you explain to me 
what they are doing and, more impor- 
tant, how relevant it is to my work in 
physics?" I had to confess that to ex- 
plain what my colleagues were doing 
would take at least a week of prepara- 
tory lecturing, that their work is not 
directed toward physics, and that it 
probably has in fact no application 
other than in mathematics itself. To 
this he said with disgust, "Well if 
mathematics is now just another disci- 
pline like Sanskrit, then why should 
the university and the nation support 
mathematics on the scale they have 
been doing?" 

The question is a serious one, and 
it has disturbed me for a long time. 
I believe that both the university and 
the nation are right in supporting and 
expanding mathematics research and 
training, but it is not easy to give ob- 
jective evidence to support my beliefs. 
Instead, I shall discuss a slightly sim- 
pler question: What are mathemati- 
cians doing and where are they going? 

Struggle for Generality 

What are mathematicians doing? 
They are doing mathematics, and at 
an ever-increasing rate. Where are 
they going? They are going in the di- 
rection of a more elegant, a more 
unified, and, necessarily, a more ab- 
stract approach to the study of mathe- 
matical structures. The important idea 
here is the emphasis on mathematical 
structures. We-and by "we" I mean 
most people in the mathematics pro- 
fession-are no longer interested in 
particular problems and their detailed 
solutions. Instead, we are interested in 
the method by which the solution was 
obtained. Thus, a proof of Goldbach's 
conjecture that every even integer is 
the sum of two prime numbers would 
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be of only ephemeral importance, but 
the method used in the proof would 
have important consequences. How- 
ever, even more important would be 
the discovery of the proper setting for 
this method-a setting which would 
provide the proof of Goldbach's con- 

jecture as a special case of a more gen- 
eral result. This proper setting would 

probably arise in the consideration of 
a mathematical structure more general 
than the structure of integers. To in- 

vestigate such a structure one would 
have to learn many new concepts and 

study their properties (a study which 
in many cases seems tedious and even 
trivial) and finally develop a whole 

theory based on these concepts, until, 
at the end, the difficult problem had be- 
come a trivial corollary to a more gen- 
eral result. 

This desire for greater generality, and 
the consequent need for more and 
more general structures, is the spur for 
much present-day research in mathe- 
matics. In this struggle for generality, 
concepts are almost daily revised and 
refined in an effort to attain a formula- 
tion which will be as simple and as use- 
ful as possible. The revision of old con- 

cepts and the introduction of new ones 

go on at such a rate that even profes- 
sional mathematicians have a hard job 
keeping up, not with the substance, but 

merely with the terminology of mathe- 
matics. The scientist or engineer faces 
a harder problem. He does not have 
the time to keep up with the changes 
in mathematical terminology and con- 

cepts, but he still needs mathematics 
as an aid in his work. He has two 

choices, which may be illustrated by 
the following analogy. 

Suppose you want to read a Russian 

paper, know nothing about the lan- 

guage, and can get no outside help. 
The most direct way of translating the 

paper would be to get a good dictionary 
and to translate word for word. An- 
other way, less direct but more useful 
in the long run, would be to get a 
textbook and learn the alphabet, the 

vocabulary, and the grammar. This 
would certainly take much longer, but 
in the end you could read this paper 
and any other Russian paper at sight. 
The scientist confronted by a mathe- 
matics problem faces the same dilem- 
ma. Either he can use a dictionary- 
or, in this case, a book of techniques- 
and hope they will be adequate for 

solving his problem or he can try to 
learn the mathematical language un- 

derlying it. 
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Recent Educational Developments 

The recent developments in mathe- 
matics education at the elementary and 

high school levels have been attempts 
to teach ithe children the language, 
not merely the methods of using the 

dictionary. We have tried to show the 
children that the fundamentals of arith- 
metic and geometry fit into a larger 
pattern and that the techniques of com- 
putation are simply necessary conse- 

quences of the axioms. Of course the 

attempt has not been completely suc- 
cessful. Naturally, parents and scien- 
tists have complained that the emphasis 
on the "why" of mathematics has 
caused the children to neglect the 

"how," and that, as a result, the chil- 
dren's ability to compute is poor. Un- 

doubtedly there is truth in this com- 
plaint. However, steps are being taken 
to remedy this weakness in the mathe- 
matics program. 

This neglect of computational skills 
could have been foreseen, because 
mathematicians are not interested in 

computation. There is a little story 
about, von Neumann which reveals this 
fact very clearly. The story goes that 
a physicist had to evaluate a compli- 
cated sum in statistical mechanics. He 
tried his best, asked all his friends, and 

finally came to request help from the 
master. Von Neumann was very busy 
but he looked at the problem, went to 
the blackboard, and scrawled busily 
for about 5 minutes. Turning to the 
awe-struck physicist, he said, "triple 
generating functions" and ushered him 
out of his office. The moral is clear. 

Despite von Neumann's great interest 
in applied mathematics and physics, he 
was basically a mathematician. Once 
he had realized that the proper tech- 

nique for evaluating the sum was to 
use the method for generating func- 

tions, his interest waned. The details 
of the evaluation and the actual answer 
were of no interest to him. 

The Concept of Function 

I have said that mathematicians are 
interested in studying more and more 

general structures. Let me present a 

special case which may illustrate what 
is meant by a mathematical structure. 
In high school mathematics we study 
formulas such as A = s2, for the area 
of a square in terms of its side, or 
v - 32t, for the velocity of a body 
falling for a given time under the in- 

fluence of gravity, or V = 7rr2h/3, the 
volume of a cone in terms of its height 
and the radius of its base. We learn 
how to manipulate these formulas and 
how to combine them. But the main 
problems are two. First, what is the 
value given by the formula for a given 
value of the argument? Second, for 
what value of the argument will the 
formula have a given result? 

In more advanced courses we change 
our viewpoint and start investigating 
what we have done and what we have 
been working with. What is a formula? 
What does it do? It produces an as- 

signment or a correspondence between 
one number or a group of numbers, 
which we call the arguments of the 
formula, and another number, which 
we call the result of the formula. Thus, 
if the argument is the side s of a 

square, the result is the area A, and if 
the arguments are the height of the 
cone and the radius of its base, the 
result is the volume of the cone. Each 
of these formulas produces an assign- 
ment or a correspondence between the 

arguments and the results. Once this 
is noticed, the mathematician sets him- 
self the problem of studying the concept 
of an assignment or a correspondence. 
He calls this concept a "function," and 
he says that the formula defines func- 
tions and that the result of a formula 
is the value of the function defined by 
that particular formula. Notice that 
here the mathematician has taken a 

typical leap into a higher level of ab- 
straction, because, instead of consid- 

ering numbers, such as the length of 
the side of a square or the time of a 

falling body or the height of a cone, 
he considers the function which pro- 
duces the area from the side of the 

square, or the function which produces 
the volume of a cone from its height 
and radius. The function is not a 
number; it is an assignment or a cor- 

respondence. 
This concept of the function being 

an entity in itself is fairly recent and 
is only slowly appearing in elementary 
education. I still remember how my 
high school teacher would scold his 
class for writing "cos2 + sin2 - 1." 
He said that sine and cosine, by them- 

selves, have no meaning; instead we 
should have written "sin20 + cos20 = 

1," which was a meaningful relation 
between numbers. Here was a case 
where the class, even though it did 
not understand why, was correct, and 
the teacher was not. Of course, sine 
and cosine are not numbers, but they 
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are functions, and the relation which 
we had written down was a correct 
relation between functions. 

Once we have introduced the con- 
cept of function, our problems neces- 
sarily change. We are no longer inter- 
ested in the problem of whether a 
given function has a prescribed value, 
or in the problem of finding the value 
of this function for a given value of 
the argument. Instead, we ask, Is this 
function increasing or decreasing, and 
where does it stop increasing and begin 
decreasing? Is it increasing at an in- 
creasing rate? And so on. As you see, 
we have now become interested in the 
properties of the function as a whole 
and not in its individual values. Such 
questions are obviously of great impor- 
tance. For example, at present the ques- 
tion of whether the cost of living is or 
is not increasing at an increasing rate 
has an obvious political significance. 

Functions of Functions 

To study these questions in which 
the function is considered as an entity, 
we find it useful to assign to each func- 
tion another function, called its deriva- 
tive. The values of the derivative func- 
tion enable us to decide whether the 
given function is increasing or decreas- 

ing. The mathematician, looking at this 
and trying to analyze what is going on, 
notices that the concept of an assign- 
ment or of a correspondence has ap- 
peared again. Since this concept has 
already been called a function, the 
mathematician realizes that he can and 
must consider functions of functions. 
Thus, differentiation and integration are 
functions of functions. For semantic 
reasons we introduce a new word, 
operator, and we say that differentiation 
and integration are operators of func- 
tions. However, plus ce change, plus 
c'est la meme chose. An operator is 
just a function of functions-that is, 
a correspondence between functions. 

Notice that again the mathematician 
has jumped to a new level of abstrac- 
tion. He started with numbers, and 
then considered correspondence be- 
tween numbers. These correspondences 
were called functions. Now he con- 
siders correspondences between func- 
tions and calls them operators. 

Again, the kind of questions a math- 
ematician asks changes. He asks: Is 
the operator linear? Is it bounded? 
Is it completely continuous? Does it 
have a spectral representation? All 
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these questions can be asked about the 
operators of differentiation and inte- 
gration, but these questions are not 

immediately relevant to the specific 
problems that might trouble a user of 
mathematics-such as, How do I solve 
this given differential equation? How 
do I evaluate this given integral? Nec- 
essarily, the mathematician knows some 
general facts about these problems, but 
to expect him to give detailed technical 
advice is as unrealistic as to expect a 
theoretical physicist to be able to fix 
a malfunctioning television set. 

Creation of New Structures 

Parallel with the introduction of 
more complicated concepts there is the 
creation of new mathematical struc- 
tures. We know that, with every real 
number, there is associated a point on 
a line; with every ordered pair of real 
numbers, a point in a plane; with an 
ordered triple of real numbers, a point 
in space; and so on. The points on a 
line, in a plane, and in space have 
associated with them a vector space of 
one, two, or three dimensions, respec- 
tively. It is a natural generalization to 
consider an ordered set of n numbers 
as a point in a space of n dimensions 
and to associate a vector space with 
this n-dimensional space. When we go 
higher by one level of abstraction and 
consider functions as entities, we find 
that certain sets of functions may be 
considered as vector spaces of infinite 
dimension. If, in this vector space, we 
introduce a generalization of the con- 
cept of the length of a vector, we get a 
mathematical structure called a Banach 
space. At the next level of abstraction 
we find that some sets of operators can 
be considered first as a vector space 
and then as a Banach space, but then 
we can go a step further. We realize 
that operators have a structure richer 
than that of a Banach space, because, 
given two operators, we can always 
apply them successively to get a new 
operator. If this process of composing 
two operators to get a third is taken 
into account, the structure of the set of 
operators is called a Banach algebra. 
In recent years, mathematicians have 
gone up to a still higher level of ab- 
straction by considering a Banach al- 
gebra as an entity in itself and by con- 
sidering different Banach algebras as 
elements of a category of Banach al- 
gebras. Then the properties of this 
category are studied. 

Mathematics and the Real World 

I have already mentioned that, with 
each new level of abstraction, the prob- 
lems the mathematician considers are 
changed. Consequently, even though, 
at the lowest level, the concepts may 
have been very intuitive and the prob- 
lems close to reality, at the later levels 
the concepts and the problems studied 
have little or no contact with reality. 
This brings us back to the question 
posed by the physicist: Why should the 
government and the university support 
mathematics on so large a scale? My 
answer must be based on pragmatic 
grounds. 

Despite the fact that mathematicians, 
from Grecian times to the present, have 
tried to avoid having any contact with 
reality, their work turns out eventu- 
ally to be intimately connected with, 
and vitally necessary for an understand- 
ing of, the real world. Instances of this 
are too numerous to mention and 
probably well known to all of you. I 
shall try to present a semiphilosophical 
basis for this interaction between the 
ivory-tower mathematician and the 
common-sense man. The mathemati- 
cian is always trying to find concepts 
that are interesting and significant. A 
concept is interesting to the mathema- 
tician if it organizes many apparently 
unrelated facts and if it lends itself 
to the discovery of new facts. The 
common-sense man looks at the real 
world and wants to understand it and 
manipulate it. Since reality is too com- 
plicated and difficult to understand, he 
must idealize real situations, and he 
must organize the multiplicity of avail- 
able facts so that they can be fitted 
into patterns. Here is where the mathe- 
matician comes in. Mathematics pro- 
vides a set of concepts or a pattern, 
with which we may try to organize the 
real world. These concepts are useful 
because they come provided with a 
multitude of consequences we mathe- 
maticians call theorems. It is only 
common sense to try to fit these ready- 
made concepts into the real world. 
Sometimes they fit and sometimes they 
do not. The surprising fact is that 
frequently they do fit very well. Per- 
haps this fact is the reason for Edding- 
ton's belief that God must be a mathe- 
matician. 

I should like to describe one instance 
in which mathematicians introduced 
and studied, for purely mathematical 
reasons, a concept which much later 
was found to be of fundamental im- 
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portance to our understanding of the 

elementary particles of physics. The 
concept I refer to is that of a group. 
This concept was conceived, more than 
a hundred years before the discovery 
of the positron, as a result of intensive 

study during the 17th and 18th cen- 
turies of methods for finding the roots 
of a polynomial equation. The Greeks 
had a solution of the second-degree 
equation. The third-degree equation 
was solved in the 16th century, and 
the fourth-degree equation was solved 

shortly afterward. But that was all. 
For the next 200 years all attempts to 
solve the fifth-degree equation failed. 
It resisted solution until, in 1832, Galois 
proved that the fifth-degree equation 
could not be solved by radicals. 

Given any equation, there are stan- 
dard numerical techniques by which 
the roots of that equation can be found 
to an arbitrary degree of accuracy. 
There are techniques available for solv- 

ing polynomial equations of any degree, 
and even for solving more complicated 
equations. What, then, is meant by the 
statement that Galois proved that it is 

impossible to solve the fifth-degree 
equation by radicals? To understand 
Galois's result, we must realize that 
the phrase "solving an equation" can 
mean two different things. Solving an 

equation can mean finding the roots 

numerically to a given degree of accu- 

racy, or it can mean what was meant 
in high school-finding a formula 
which expresses the roots of the equa- 
tion in terms of the coefficients. Ga- 
lois's theorem refers to solution in the 
latter sense. 

The concept of formula needs some 
further elaboration. Given a third- 

degree equation, we can find a formula 
which expresses the roots of the equa- 
tion as trigonometric functions of the 
coefficients. This is not the kind of 
formula I am referring to. By a for- 
mula I mean an expression that is 
formed from the coefficients of the 
equation by adding, subtracting, multi- 

plying, dividing, and, finally, taking 
roots, such as square roots, cube roots, 
and so on. We call such an expression 
"an algebraic function of the coeffi- 
cients." Galois's theorem states that 
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the roots of a polynomial equation of 
degree higher than four cannot be 
expressed algebraically in terms of the 
coefficients. 

If you take a common-sense and 
practical view of mathematics, as some 
mathematicians do, the search for an 

algebraic formula seems a sheer waste 
of time. After all, computers can pro- 
vide us with the roots of any equation 
with any desired degree of accuracy. 
What more could a formula do? Also, 
for the third- and fourth-degree equa- 
tions, application of the formulas is 
more difficult than straightforward nu- 
merical technique. Then why bother to 

study the solution of polynomial equa- 
tions? 

The mathematicians of the 17th and 
18th centuries were well aware that 
there was no practical need for alge- 
braic formulas, despite the lack of 

20th-century computers. Nevertheless, 
motivated perhaps by a puzzle-solving 
attitude, or by a feeling that gaps in 
knowledge must be filled, or by a need 
to understand why certain polynomials 
can be solved and others cannot be, 
they wasted many hours and many 
reams of paper trying to solve the fifth- 
degree equation. It was this waste of 
time, this impractical pursuit of knowl- 
edge for its own sake, that led Galois 
to introduce the concept of a group, a 
concept which is fundamental to the 

understanding of present-day physics. 
To see how this concept of a group 

might have arisen in the study of the 
solution of polynomial equations, let 
us consider the third-degree equation 

t3 - at + at -a3 = (1) 

and let us try to find its roots. We 
know that it has three roots-t., t2, 

t3-and that each satisfies Eq. 1. 
If we write the equation as 

(t-- h)(t- t2) (t-- t) = 0 

and equate the coefficients of corre- 

sponding powers of t, we find the fol- 

lowing system of three equations for 
the three roots: 

ti + t2 + t = a, 
t3t2 + t2t3 + t3t = a2 (2) 

tt112t == a3 

The fundamental problem of the theory 
is to distinguish between the roots. 
Which one is the first? Which is the 
second? Which is the third? 

A glance at Eq. 2 shows that each 
equation contains all of the roots in a 
symmetric fashion. Consequently, if 
the roots are relabeled in an arbitrary 
way-for example, in such a way that 
the root t1 is labeled t3 (we indicate 
this by the symbol t1 -> t3) and the 
root t3 is labeled t1 (t3 -> tl)-each 

equation in Eq. 2 will remain un- 
changed. Such a relabeling of the roots 
is called a permutation. Because any 
permutation of the roots followed by 
another permutation is also a permuta- 
tion of the roots, we say that the set 
of all permutations of the roots is a 
"group," called the symmetric group 
on three objects. For later reference, 
I list all permutations of this group in 
Table 1. 

The concept of a group can be used 
to give a precise definition of the con- 
cept of a symmetric function. A func- 
tion of the three roots of Eq. 1 is 
called symmetric if the function re- 
mains invariant no matter how the 
three roots are permuted. Thus, Eq. 2 
shows that each coefficient in Eq. 1 is 
equal to a symmetric function of the 
roots of Eq. 1. It is easy to verify the 
proposition that any function formed 
from the coefficients by addition, sub- 
traction, multiplication, and division- 
we call such a function a rational func- 
tion of the coefficients-must also be 
a symmetric function of the roots. An 
important result is the converse (2): 
Any rational symmetric function of all 
the roots can be expressed as a rational 
function of the coefficients. Since one 
root is not a symmetric function of all 
the roots, we conclude that a rational 
function of the coefficients cannot give 
a formula for an individual root. 

The only hope for expressing unsym- 
metric functions of the roots as for- 
mulas in terms of the coefficients is 
to use algebraic functions of the coeffi- 
cients-that is, functions containing 
radicals, such as square or cube roots. 
Let me illustrate by constructing an 

unsymmetric function D of the roots, 
where D is defined as follows: 

D= (tl-t2)(t2-t3)(t3-tl) (3) 

Clearly, D is not a symmetric function 
of the roots because, under the permu- 
tation P4 in which t1 -> t3 and t3 -- t, 

D becomes (t3 - t2) (t2 - tl) (t - 

t3) = -D. Consequently, D cannot 
be expressed rationally in terms of the 
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Table 1. Group of permutations, P, of the roots of the cubic equation (Eq. 2). 

P1 P2 P3 P4 P5 P6 

tl --> tl --- h tl -- tl t2 t -l > - t- 3 tl -> th 

t2 ->t2 t2 t3 t2 --- h l t--> t t2. --t t2 t2 t tl 

t3 -- t3 t3 -- tl t3 -- t2 t3 -> t2 t3 -- tl t3 - t3 



coefficients. However, the quantity D2 
is invariant under all permutations of 
the symmetric group, and it is easy to 
show (2) that 

D2 = al2a22 + 18 a1a2a3 - 
4a2 - 27a:;, (4) 

a rational function of the coefficients. 
From Eq. 4 the value of D can be 
found by taking square roots. 

Consider the expression for D in 
Eq. 3. Even though D is not invariant 
for the full symmetric group, it is in- 
variant for the subgroup containing 
the following permutations: P1, P?, 
and P3. It can be shown (2) that any 
function of the roots which is invariant 
for this subgroup can be expressed 
rationally in terms of the coefficients 
and D, or, because of Eq. 4, in terms 
of rational functions and square roots 
of rational functions of the coefficients. 
For example, if 

E= (1) (t2/t2) ) + (t:/t,), 

it is apparent that E is invariant under 
the permutations of the subgroup but 
not under P4, P,, or P,. We find that 

2acE == aa2 - 3a:, -+ D 1/. 

The arbitrariness in the sign of the 
square root is due to the fact that the 
value of E depends on the labeling of 
the roots. For some labelings the value 
of E is given by the positive square 
root, for other labelings by the nega- 
tive square root. 

The next step in the solution of the 
cubic is to study those functions of 
the roots which are invariant for still 
smaller subgroups of the symmetric 
group and to express such functions in 
terms of the coefficients. Finally, we 
should reach a function such as t, 
which is invariant only under the iden- 
tical permutation P1, and we would 
have obtained a formula for the root 
of the cubic in terms of the coefficients. 

An analysis of the method used re- 
veals the following important idea [an 
idea whose applications and philosophi- 
cal implications have been studied by 
Weyl (3)]. In studying an object, 
one considers the changes produced in 
that object by certain transformations. 
Those transformations which do not 
change the object are called symme- 
tries of the object. The set of sym- 
metries of an object always form a 
group. The study of the group, its 
subgroups, and those objects which are 
left invariant by all transformations of 
the group can be used to obtain useful 
information about the original object. 
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I give two examples of the usefulness 
of the group of symmetries of an ob- 
ject. One example is from elementary 
geometry, the other from the theory of 
ordinary differential equations. In ele- 
mentary geometry, a parallelogram is 
a four-sided figure with its opposite 
sides parallel. A little thought shows 
that the parallelogram has only two 
symmetries. One is the identity trans- 
formation-that is, the transformation 
which leaves every point unchanged; 
the other is the reflection of every point 
in the intersection O of the diagonals, 
so that a point such as P in Fig. 1 is 
transformed into Q and Q is trans- 
formed into P. We use this center of 
symmetry to prove the following. 

In Fig. 2, if EFGH is a straight line, 
through 0, intersecting AB and DC 
extended in E and H, respectively, and 
intersecting AD and BC in F and G, 
then EF - GH. The proof takes just 
a few lines. Because reflection in O is 
a symmetry of the parallelogram, OE 
= OH and also OF OG. Therefore 
(OE - OF) = EF = (OH - OG) - GH. 

The next example shows that the 
study of groups can help in solving 
differential equations. Consider the 
differential equation 

dy= y +I' 
dx x y 

We observe that if we make the trans- 
formation x -> ax, y --> y, where a and 
p are constants, the equation becomes 

13 dy A y a" x" 
a dx a x 3 y 

We notice that if / - a2, the equation 
is invariant under the transformation. 
Since the quantity y/x2 is also invariant 
under this transformation, an obvious 
device is to introduce the new depend- 
ent variable ui = y/x2. We find that 

Xlt' = 1 - IU, 

an equation which can be immediately 
solved by separation of variables. 

Applications of Group Theory 

In the late 19th century (4) Sophus 
Lie applied group theory to partial dif- 
ferential equations and showed that the 
solutions of equations involving the 
Laplacian must provide a representa- 
tion of the orthogonal group. The solu- 
tions were the well-known ones con- 
taining the Legendre functions. 

P . 

\\ I/ 

A Q 

Fig. 1 

'Fig. 2 

Finally, we come to physics. When 
Schrodinger formulated his famous par- 
tial differential equation describing the 
quantum mechanical behavior of a hy- 
drogen atom, the solutions in terms of 
Legendre functions were available from 
previous work in partial differential 
equations. However, when more com- 
plicated systems were studied, the rele- 
vant differential equations turned out 
to be too difficult to solve. Wigner (5) 
pointed out that, since atoms have rota- 
tional symmetry, the set of their wave 
functions must be invariant under the 
orthogonal group. Therefore the Legen- 
dre functions come in again. We may 
even leave out these functions and work 
with the general properties of the rep- 
resentatives of the orthogonal group. 

This introduction of group theory 
bore unexpected fruit. The first groups 
considered were those that arose natu- 
rally from the fact that space or time 
is essentially featureless, so that where 
an observer stands in time and space 
to look at an event should be irrelevant. 
However, as physicists explored deeper 
and deeper into the atom, where par- 
tial differential equations were no 
longer appropriate and where our in- 
tuitive concepts of space and time are 
of doubtful validity, they began to rely 
more and more on the theory of 
groups. Thus, Gell-Mann and Neiman 
recently proposed that certain elemen- 
tary particle reactions were invariant 
under the special unitary group in three 
dimensions. By looking at the repre- 
sentations of this group, they predicted 
the existence of a new elementary par- 
ticle, a prediction which was later con- 

361 

C, 



firmed experimentally. This and similar 
successes of group theory have so im- 

pressed physicists that any day now we 
shall hear them say, "The world is just 
made up of irreducible representations 
of groups." 

Conclusion 

Let me emphasize the point I have 
been trying to make. The mathemati- 
cian's playing with the roots of equa- 
tions, a play which had no practical 
motivations and almost no possibilities 
of practical application, led to the rec- 

ognition of the importance of sym- 
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metry and groups. The study of theory 
of groups led to mathematical discov- 
eries in geometry and differential equa- 
tions, and finally to prediction of the 
existence of a new elementary particle. 
Surely a surprising outcome for the 

ivory-tower speculations of an impracti- 
cal mathematician! 

Despite my professional bias, I must 

acknowledge that the importance of 

symmetry was recognized before math- 
ematicians invented the theory of 

groups. In 1794 William Blake wrote: 

Tiger, Tiger, burning bright 
In the forests of the night, 
What immortal hand or eye 
Could frame thy fearful symmetry? 
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However, to the mathematicians must 
be given the credit of recognizing that, 
to understand symmetry, you must 

study the theory of groups. I can now 
answer my original question, What are 
mathematicians doing? They are trying 
to make precise the intuitions of poets. 
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NEWS AND COMMENT 

1966 Nobel Laureates 
in Medicine or Physiology 

NEWS AND COMMENT 

1966 Nobel Laureates 
in Medicine or Physiology 

Two eminent scientists, Peyton Rous 
and Charles Huggins, were named last 
week to share the 1966 Nobel prize 
in medicine or physiology for their 
work on cancer. Rous is Member 
Emeritus of Rockefeller University; 
Huggins is director of the Ben May 
Laboratory for Cancer Research at the 

University of Chicago. The following 
are descriptions and appreciations of 
their work by W. Ray Bryan and by 
Paul Talalay and Guy Williams-Ashman. 

Charles Huggins 

The ravages of cancer present 
medicine with one of its most difficult 
and challenging problems. Cancer re- 
search must be concerned not only 
with understanding of the nature and 
causes of malignant transformations 
but also with the development of effec- 
tive measures to combat the tragic 
consequences of this disease in man. 
The award of the 1966 Nobel prize 
for medicine or physiology jointly to 
Charles Huggins and Peyton Rous 
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honors two scientists whose investiga- 
tions have revolutionized both our com- 

prehension of the cancerous process 
and approaches to the treatment of hu- 
man cancer, and have served to inspire 
many aspects of contemporary cancer 
research. 

The Nobel prizes over the past 65 

years have served as chronicles of hu- 
man achievement. With the single ex- 

ception of a prize given in 1926 for a 
rather restricted contribution to car- 

cinogenesis, no Nobel award has been 
made hitherto for work on cancer, a 
fact which only serves to emphasize 
the importance of this year's Nobel 

prizes, and of the researches of Hug- 
gins and Rous. 

Charles Huggins is director of the 
Ben May Laboratory for Cancer Re- 
search at the University of Chicago. 
Born in Halifax, Nova Scotia, in 1901, 
the year of the very first Nobel awards, 
he was educated at Acadia University, 
Nova Scotia, and the Harvard Medical 
School. Following a surgical apprentice- 
ship under Frederick A. Coller at the 
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Charles Huggins is director of the 
Ben May Laboratory for Cancer Re- 
search at the University of Chicago. 
Born in Halifax, Nova Scotia, in 1901, 
the year of the very first Nobel awards, 
he was educated at Acadia University, 
Nova Scotia, and the Harvard Medical 
School. Following a surgical apprentice- 
ship under Frederick A. Coller at the 

University of Michigan, he became in 
1927 a member of the original faculty 
of the School of Medicine at the Uni- 
versity of Chicago, where he has 
worked and taught for 40 years. With 
the encouragement and guidance of his 
distinguished surgical chief, Dallas B. 
Phemister, Charles Huggins entered the 
field of urology, and he headed the 
urological division of the department 
of surgery for 25 years. Sent to Eu- 
rope by Phemister in 1930 for train- 
ing in clinical urology, Huggins spent 
several months in the laboratory of Sir 
Robert Robison at the Lister Institute. 
Here he became acquainted with the 
phosphate esters and the phosphatases, 
which came to play a prominent part 
in his later work on induction of bone 
formation and the treatment of prostatic 
cancer. In that year he also met Otto 

Warburg, an experience which made 
a strong impression on Huggins, and 
which later matured into a long and 

interesting friendship. 
Professional identification with urol- 

ogy gave Huggins an opportunity to 
concern himself with problems in the 
physiology and diseases of the male 
genitourinary system. After several 
years of novel and important work on 
the induction, by bladder epithelium, 
of the transformation of connective 
tissue elements into bone, he turned 
his attention to the chemistry and 
hormonal control of the secretions of 
male accessory glands of reproduction. 
It was these studies that formed the 
basis for Huggins's work on carcinoma 
of the prostate which has been honored 

by the Nobel prize. By an ingenious 
surgical procedure introduced in 1939, 
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