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tions. It was possible to follow a series 
of equally strong reacting stages of 
M. nelsoni through schizogony and 
sporogony (Fig. 1C). The intensity of 
reaction of the prespore stage was 
equal to the plasmodial stages (Fig. 
1, D and E) and was not included in 
the illustration. Fluorescence occurred 
in the cytoplasm of sporoblasts and in 
the sporoplasm and capsule of the im- 
mature spore (Fig. 1F). The conjugate 
appeared unable to penetrate the ma- 
ture spore wall and stained only the 
capsule (Fig. 1G). The only other or- 
ganism in the oysters that fluoresced 
in the conjugate was an amoebula, 
which was either part of the schizogony 
cycle that has not been recognized or 
a rhizopoda. It was present in two of 
the infected oysters. Since whole oys- 
ters were used in these studies, the 
antigens included any organisms in the 
mantle cavity and the digestive system. 
When the distance separating the ori- 
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Oxygen as a Primary 

Species in Radiolysis of Water 

Abstract. Recent results are sum- 
marized of y-radiolysis of dilute nitrate 
solutions at neutral pH in the presence 
of oxygen and hydrogen as radical 
scavengers. Complete analysis of the 
system leads to values of the primary 
yields showing a net deficit of oxidized 
products of -0.4. Analysis of results 
already available for the oxygen yield 
shows that oxygen originated from the 
radiolysis of water with a g value of 
-0.1 (g values are derived values for 
yields of primary species for 100 elec- 
tron volts). This finding gives material 
balance and provides evidence of oxy- 
gen being a product of water radiolysis. 

Radiolysis of water and aqueous solu- 
tions is commonly described in terms of 
primary species produced in yields in- 
dependent of the solute (1). Well- 
established primary species are H2, 
H202, OH, H, and e-, the hydrated elec- 
tron. However, recent quantitative de- 
terminations of these yields indicate a 
material-balance deficit of 0.6 ? 0.2 
based on Z g(OH) + 2g(H202) (2) (g 
signifies derived values for yields of pri- 
mary species for 100 ev; G signifies the 
experimentally measured yield of prod- 
uct for 100 ev absorbed energy). To 
account for this deficit, Allen (3) sug- 
gested that there may be another, 
hitherto unnoticed, oxidizing species 
produced in water radiolysis, perhaps 
the oxygen atom. We now report experi- 
mental evidence that oxygen is a prod- 
uct of water radiolysis and indicating 
that it may originate as 0 atoms. 

Recent work (4) on the y-radiolysis 
of dilute nitrate solutions enables one to 
propose a mechanism that completely 
accounts for the experimental observa- 
tions. The mechanism is based on the 
reduction of NO3- to NO2 by e- and H, 
NO2 undergoing dismutation to yield 
NO2-; OH radicals reoxidize NO2- 
to NO2. In the absence of added 
scavengers, G (NO2-) is essentially given 
by '/2 (ge- + gH - gOH). Molecular 
hydrogen acts as an OH scavenger, the 
nitrite yield then becoming '/2 (ge- + 
gH + gOH). This aspect of the mecha- 
nism is confirmed by our evaluation of 
the rate-constant ratio: k(OH + H2): 
k(OH + NO2-) = 0.8 x 10-2. Determi- 
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solvated electron, for which we obtain 
k(e- + 02):k(e- + NO3-) = 2.5. The 
mechanism thus involves no unusual spe- 
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there may be a systematic error in the 
02 analysis that is not found in the 
(simultaneous) H, analysis; this error 
must also be linearly related to f/o- 

/12o, which we consider to be somewhat 
unlikely. Also, extrapolation of the 
linear relation to -0.1M may not be 

0.5 0.6 valid; the relations may possibly change 
near the origin. 

However, further evidence that the 
oxygen does in fact originate from the 
water is explicitly obtained by isotope 
methods. Mahlman, using 1.6 percent 

5 6 H,2018, has presented results (6) from 
which G(O.2)1120 may be obtained as a 

ition as a function of NO.- concentration [Fig. 
between 

)8-labeled IB; the value of G(O..)2 o at (NO--) 
solutions - 0 is taken from the intercept of Fig. 

of nitrate 1A]. Even in quite concentrated nitrate 
solutions, oxygen is produced from wa- 
ter, and the variation of production with 
nitrate concentration indicates that it is 

onsidera- formed with a G of -0.1 in dilute solu- 
>le us to tion. We believe this to be clear evi- 

for pri- dence of oxygen being a product of 
water radiolysis. 

-253 T The state of the oxygen on formation 
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the variation of G(O.2) 2o0 with NO:.- 
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Dainton et al. (8), working with the 
identical system, also find stoichiometry, 
but their individual G values differ con- 
siderably from Hochanadel's. Seddon 
and Sutton (9) find stoichiometry in the 
NO system, but their evaluation is gOH 
- 2.9, as is Fielden's (10) in the 
MnO -: HCO.,- system; this value of 
gOH coincides with the sum of our 
gOH + g 0, (in equivalents). 

Thus the situation concerning the pri- 
mary species in neutral solutions must 
still be regarded as unsettled. It may 
well be true that 0 atoms may be mea- 
sured in most systems as the stoichio- 
metric equivalent in OH radicals; or 
they may appear as 0.,-which may not 
be expected. The scavenger systems 
used to determine primary species must 
be carefully evaluated for specificity. 

MALCOLM DANIELS 

ERIC WIGG 
Radiation Center and 
Department of Chemistry, 
Oregon State University, 
Corvallis 97331 
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G(02) = G(O2)Tf242) + G(O0)xo3-fxo3- 

where f/n20 and f, - are the fractions of 

energy deposited in the water and ni- 
trate ion, respectively, and G(O,)1o20 
and G (0) xo3- represent the oxygen 
yields from water and nitrate. Figure 
1 A shows that the data fit this linear 
funtion well, and we obtain a value 
G( 02),0 = 0.1 from the intercept at 

infinitely dilute solution, which, within 
the limits of experimental error, is the 
amount needed to remove the material- 
balance deficit. 

The unusual nature of this conclusion 
-that oxygen is produced. from water 
in the radiolysis of dilute nitrate solu- 
tions-requires that other interpreta- 
tions of these data be considered. Thus 
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Phosphorylase Kinase of the Liver: Deficiency 
in a Girl with Increased Hepatic Glycogen 

Abstract. Studies of a child with glycogenosis revealed an increased concentra- 
tion of glycogen and low phosphorylase activity in her liver. Using mixtures of 
homogenates of the patient's liver and of normal liver, we found the low phos- 
phorylase activity to be caused by a deficiency of phosphorylase kinase and not 
of hepatic phosphorylase. The fact that phosphorylase activity was restored to 
normal values by the addition of phosphorylase b kinase from rabbit muscle 
substantiates this conclusion. 
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Since Hers (1) reported studies of 
two patients with low activities of 
hepatic phosphorylase and elevated con- 
centrations of glycogen in the liver, a 
decrease in the activity of phosphoryl- 
ase has come to be equated with a 
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centrations of glycogen in the liver, a 
decrease in the activity of phosphoryl- 
ase has come to be equated with a 

deficiency in hepatic phosphorylase 
(Type VI glycogenosis) (2). Such an 
interpretation does not take into ac- 
count the complexity of the phospho- 
rylase system (Fig. 1) which com- 
prises at least three other enzymes (3). 
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