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Man is a decision-making ani- 
mal and, above all, conscious of this 
fact. This self-scrutiny has led to con- 

tinuing efforts to find efficient ways of 

behaving in the face of complexity and 

uncertainty. Aristotelian logic and prob- 
ability theory, psychology and psychi- 
atry-these are some of the by-products 
of the efforts to understand conscious 
and subconscious decision making. Over 
the last 25 years there has been a vast 
intensification of research in this in- 

triguing area, as well as a more wide- 

spread recognition of its explicit and 

implicit role in all segments of society. 
The many varieties of planning and 

programming required to overcome, cir- 
cumvent, or neutralize the myriad in- 
tricacies of engineering and social sys- 
tems have generated a number of new 
mathematical theories. Dynamic pro- 
gramming is one of these, a child of 
its century. It is dedicated to the study 
of multistage decision processes, proc- 
esses where a sequence of decisions 
over space and time is required. Mak- 

ing full use of the unique "as if" atti- 
tude of mathematics, the theory can 
be equally well applied to situations 
which can be profitably construed as 

multistage decision processes. 
One of the most important types of 

problems requiring a sequence of de- 
cisions is that of the control of a sys- 
tem. It may be a matter of harnessing 
the tides, of allocating hydroelectric 
power, of preventing a chain reaction 
of power failure, of cutting and plant- 
ing trees, of breeding disease-resistant 
cattle, or of destroying a pest which 
menaces the trees. Alternatively, it may 
be the management of a university en- 
dowment program that is involved, 
or the maintenance and replacement 
of a fleet of taxicabs. What is common 
to all these operations, and to many 
other control and decision processes, is 
the fact that they are not one-shot af- 

fairs. On the contrary, many intercon- 
nected observations and actions are re- 

quired. The procedure is as follows. 
One examines the system with an eye 
to its needs and obligations. To fulfill 
its needs and satisfy its obligations a 
number of courses of action are avail- 
able, one of which must be chosen. 
At a subsequent time, a further ex- 
amination is made to determine the ef- 
fect of this decision and to obtain the 
information required for the next de- 
cision. This combination of observation, 
interpretation, and decision is then re- 

peated, in some cases indefinitely. 
Dynamic programming supplies a 

systematic technique for determining 
what information is required and how 
it should be used effectively. The appli- 
cations of this mathematical theory 
have grown constantly in number as the 

capabilities of the digital computer to 
store, process, and retrieve informa- 
tion have grown in power. 

Feedback Control 

To illustrate some of the foregoing 
ideas, let us consider the guidance of a 

space vehicle from its blast-off to its 
soft landing on the moon. Through 
utilization of available astronomical 
data in Newton's equations of motion, 
an appropriate path is plotted (Fig. 1). 
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Let us suppose that this path has been 
determined by the requirement that it 
be a path requiring the least flight time. 
The determination can be made by 
any of a number of different methods, 
although it is by no means a trivial 
matter. Despite this theoretical success, 
there are difficulties as far as actual 

flight is concerned. After all, a space- 
craft is not the point particle of New- 
tonian mechanics. It is a huge, un- 

wieldy system possessing different com- 

ponents with different propensities for 

malfunctioning or for behaving in a 
fashion different from a prediction 
based upon a simpler, idealized system. 
For a variety of reasons the rocket 

may begin to wobble and may ulti- 
mately deviate considerably from the 

plotted path, as indicated in Fig. 2. 
The space probers are, of course, 

aware of this possibility. From the time 
of launching, the position and velocity 
of the vehicle are carefully monitored, 
the actual and calculated paths being 
constantly compared. At a suitable time, 
a control mechanism is actuated to 
force the vehicle back to the desired 

trajectory. This is an example of feed- 
back control. The amount of effort re- 

quired to carry out the correction de- 

pends on the extent of the deviation 
from the planned flight. The monitor- 

ing and control continue until the voy- 
age has been successfully concluded. 
The final part of the control process 
involves adjusting the velocity so that 
the giant ship lands on the surface of 
the moon with minimum impact. 

Difficulties 

Guidance of the spacecraft is ef- 
fected through a sequence of observa- 
tions and decisions. Should a correct- 

ing force be exerted, and, if so, how? 
The theory of feedback control is quite 
elegant, and we are surrounded by ex- 

amples of its successful application. 
Nevertheless, severe difficulties can arise 
in practice. One source of these is dis- 
cussed in the following extension of 
the spacecraft illustration. The mathe- 
matical problem of neutralizing mid- 
course meandering is a difficult one. 
In order to render it more tractable, 
the mathematician considers the case 
where only a small amount of stray- 
ing is allowed. Most of the convention- 
al theory of feedback control is based 

upon this reasonable initial hypothesis, 
which allows the use of linear equa- 
tions and thus the use of the full 

power of classical analysis. As a con- 

sequence, we have available a number 
of techniques for control which are 
quite effective provided nothing unto- 
ward occurs. Suppose, however, that 
the well-known perversity of inanimate 

objects begins to operate and a num- 
ber of small malfunctions accumulate 
to produce a serious deviation from 
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the calculated trajectory. Suppose, 
further, that corrections based upon 
small-deviation theory are made. Then 

something like the zig-zag course shown 
in Fig. 3 can occur. If the oscillations 
around the calculated path are consid- 

erable, the time required for the space- 
craft to traverse the corrected path 
may be much greater than the time 

originally contemplated, and the vehicle 

may run out of fuel. Moreover, the 
situation may become similar to that 
of a beginner attempting to ride a bi- 

cycle. The correcting influences become 

greater and greater and occur at shorter 
and shorter intervals until the trajectory 
becomes so erratic that no correction 
is possible. This is the ultimate in in- 

stability. 
The source of difficulty has been a 

much too narrow use of the concept 
of feedback control. Instead of con- 

centrating on the original goal, that of 

traveling from the earth to the moon 
in minimum time, we foolishly focused 
on the subgoal of adhering rigidly to 
the calculated trajectory. At P of Fig. 
2 we should have recognized that we 
were quite far from the original path 
and should then have plotted a new 
path starting from P and ending at the 
moon (see Fig. 4). 

If it turns out that the vehicle is 
forced off this new path by further mal- 
functions, we should repeat the fore- 
going procedure. We should locate the 
current position in space and then 
chart the course which minimizes the 
time required to get from this position 
to the moon. This is a simple com- 
monsense approach to the control of 
a system, and to multistage decision 
making in general. We do the best we 
can starting from where we are. 

Policy Concept 

This is the essence of dynamic pro- 
gramming. Basic to this procedure is 
the. concept of a policy, a rule for tell- 
ing what decision to make in terms of 
the current position of the system. The 
major advantage of this new control 
concept over the classical ideas of con- 
trol lies in its flexibility. We are pre- 
pared for all eventualities. No matter 
what the current position, a policy in- 
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forms us what control to exert. No 

longer are we bound by preconceived 
notions of the nature of the most de- 
sirable path. As we see below, implicit 
in the idea of a policy is the basic 
notion of learning from experience. 

Multistage decision making is 

regarded as the repeated application of 
a policy. A policy which is most ef- 
ficient in the sense of minimizing time, 
or fuel, or cost or of maximizing profit 
is called an optimal policy. 

These optimal policies can be quite 
simply characterized by means of an 

intuitively derived "principle of opti- 
mality": an optimal policy has the 

property that, whatever the initial state 
and initial decision are, the remaining 
decisions must constitute an optimal 
policy with regard to the state result- 

ing from the first decision. 
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Fig. 3 

This is a slightly more abstract for- 
mulation of the commonsense approach 
discussed above. The translation of this 
formulation into mathematical terms 

provides us with equations which enable 
us to determine the optimal policies. 

Application 

The very flexibility of the dynamic 
programming approach generates dif- 
ficulties in its application. As indicated 
above, a policy is a rule which de- 
termines the optimum decision ("de- 
cision" being equivalent to "control") 
in every conceivable state of the sys- 
tem. Since complicated systems can ex- 
ist in a very large number of conceiv- 
able states, it is necessary to store a 
considerable set of possible decisions 
for future use. Consequently, until very 
recently the limited storage and re- 
trieval capacities of digital computers 
severely restricted the application of dy- 
namic programming. 

Thus, for example, the largest com- 
puters commercially available a few 
years ago could, at most, store and 
retrieve quickly 64,000 ten-digit num- 
bers. This seems to be an enormous 
capacity until we make a brief count 
of the possible positions of a space ve- 
hicle. When the vehicle is idealized as 
a point, there are three position co- 
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ordinates and three velocity coordi- 
nates, the usual six-dimensional phase 
space. An allowance of ten possible 
values for each of these coordinates 
yields 106 possible positions of the 
system. 

There are, of course, more efficient 
ways of storing a policy. Nevertheless, 
I hope I have indicated some of the 
difficulty encountered in describing a 
policy for a complex system. Fortunate- 
ly, with the current generation of com- 
puters the situation has improved 
enormously. The number 64,000 has 
been increased to 106, and even to 
2 X 106, while operating times have 
decreased. We can expect 106 to be 

replaced, within 10 years, by 108, with 
the time of operation cut again by a 
factor of at least 100. All this means 
that dynamic programming methods 
will be readily applicable to many of 
the vital engineering, economic, and in- 
dustrial systems of our society. 

What is extremely important is the 
fact that these techniques in many cases 
do not require as much advanced 
mathematical training as the classical 
methods do. Many of the classical theo- 
ries were constructed to avoid the then 
impossible task of making large-scale 
arithmetic calculations. As the com- 
puter is developed, and as new mathe- 
matical ideas based upon the ability of 
the computer to carry out billions of 
simple instructions become widely 
known, we will see an elimination of 
the mathematical middleman through- 
out many economic, engineering, and 
scientific domains. The mathematician 
will thus be a typical victim of auto- 
mation and sophistication. Fortunately, 
of course, he has more than enough 
wilderness to which to retreat. For ex- 

ample, major research efforts are re- 
quired to reduce combinatorial prob- 
lems and questions in statistical me- 
chanics to a formulation where a com- 
puter can be used. 

Multistage Decision Making 

Let us now consider some more-com- 
plicated types of decision making. With 
all the difficulties we conjured up, we 
nevertheless made certain simplifying 
assumptions. 
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1) We can accurately determine the 
state of the system at any time; or, 
equivalently, knowing where we are, we 
can determine the time. 

2) We know when the control is 
exerted and can accurately predict its 
effect. 

For a variety of reasons, some the- 
oretical, some operational, all these as- 
sumptions are idealizations. This does 
not mean that they are not useful. It 
merely means that we should be pre- 
pared to modify them when the im- 
portant simplification they provide in- 

tellectually begins to limit us scientif- 
ically in our ability to understand and 
predict. 

Let us consider here only the case 
where cause-and-effect predictions have 
to be modified. If we cannot predict 
exactly what the effect of a decision is 
going to be, or predict it accurately 
enough, clearly the problem of effective 
decision making becomes one of a high- 
er order of difficulty. To begin with, it 
isn't even clear what one means by 
"effective" or "optimal." 

Fortunately, there already exists a 
mathematical theory devoted to the 
study of unpredictable effects, the the- 
ory of probability. Naturally, this the- 
ory does not cover all kinds of chance 
events, only carefully chosen types of 
violations of certainty. And, as long as 
we are forcing ourselves to study deci- 
sion making under conditions of un- 
certainty, let us return to a problem area 
vastly more entertaining than that of 
space travel-the area of gambling sys- 
tems. We can, if we desire, protect our- 
selves against the charge of frivolity 
with the observation that the mathe- 
matics involved is abstractly identical 
to that involved in the actuarial activ- 
ities of insurance companies, in the in- 
vestment plans of Wall Street, and in 
divers questions arising in reliability 
theory, inventory theory, and so forth. 

Let us then leave the space vehicle 
in midcourse and turn to the dilemma 
of the casual visitor to Las Vegas who 
would like to cover his expenses by 
means of some judicious wagers. In- 
tuitively, we feel that the amount he 
bets on each turn of the wheel or roll 
of the dice should depend upon how 
much money he has and what his ob- 
jective is. Once again, it is clear that 
what is required in a gambling system 
is a policy, a rule that tells the gambler 
what bets to make, and, more generally, 
what decision to make, in every possi- 
ble situation. Indeed, dynamic program- 
ming has been used with success in the 
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game of blackjack, and in other gam- 
bling as well. 

A flexible policy is thus ideally suited 
to the exigencies of a multistage deci- 
sion process involving chance events. 
What is esthetically satisfying is the 
fact that the principle of optimality 
provides a mathematical apparatus for 
treating deterministic and probabilistic 
decison processes in a uniform fashion. 
The term stochastic is often used to 
describe a process involving chance 
events, precisely because it is a word 
with no daily-life connotations. 

Adaptive Control 

The examples we have considered 
so far may be called conventional de- 
cision processes, inasmuch as they have 
involved the following further tacit 
assumption. 

1) We know all the basic variables 
required to describe the system. 

2) We are familiar with all possible 
decisions. 

3) We know the general structure of 
cause and effect in either the determi- 
nistic or the stochastic sense. 

4) The overall objective of the deci- 
sion or control process is clearly and 
precisely defined. 

In a number of important situations 
(in fact, in all decision-making situa- 
tions), we face the problem of making 
decisions without a full knowledge of 
the basic workings of the underlying 
system. This is the state of affairs in 
running a major industry, in making 
policy in the economic and military 
spheres, in designing experiments, and 
in doing research in general. Consider, 
for example, the matter of constructing 
a gambling system without knowing 
whether the dice are loaded. We would 
prefer to take time out to obtain the 
missing data, but the rules of the game 
do not allow it. It is necessary to learn 
and act at the same time. We start with 
certain preconceptions of the nature of 
an optimal policy and then systematical- 
ly modify this policy on the basis of 
experience. This is called adaptive con- 
trol. There is obviously an intimate 
connection between these concepts and 
what the psychologist calls adaptation. 

In dealing with large complex sys- 
tems we encounter the formidable prob- 
lems of deciding what information is 
to be used in decision making, how 
the maximum amount of information 
can be extracted from small samples 
of data, what possibly can be learned 

from further experimentation and ob- 
servation, and how the available infor- 
mation can be used to modify initial 
policies. Not only do we have to decide 
upon the allocation of time and other 
resources to the control activity; we 
also must decide how much time and 
effort to devote to studying the intrinsic 
nature of the system. 

The concept of a policy extends to 
this wider class of decision and control 
processes, with the proviso that a pol- 
icy now tells us what to do in terms of 
where we are-and what we know. 
When "information" is taken to include 
a set of additional state variables, the 
principle of optimality can be used to 
obtain a precise mathematical formula- 
tion of adaptive control processes. The 
mathematical theory is on a much 
higher conceptual and analytic level 
than that for the deterministic and 
stochastic processes described above. 
Despite all the power of current math- 
ematics and the power of computers 
now in the design stage, we cannot 
expect mastery in these areas until 
sometime far in the future. This is an 
excellent example of a scientific area 
requiring a great deal of sophisticated 
conceptualization and formulation be- 
fore any arithmetic can be done. 

As stated above, in an adaptive con- 
trol process a decision affects not only 
the position of the system but also our 
information about the system. The 
study of these processes thus forces us 
to analyze in detail what we mean by 
"information" and by "learning." This 
is nowhere clearer than in the attempt 
to write a computer program for an 
adaptive process. Much to his distress, 
the mathematician is confronted with 
the problem of analyzing "thinking." 

Hierarchy of Decision Making 

As might be expected, there is no 
simple, or even unique, explanation of 
this phenomenon of the human mind. 
Let us consider ways in which a math- 
ematician can approach this thorny 
subject. Do machines think? It is not 
surprising that a great deal of contro- 
versy, much of it emotional and visceral, 
has arisen over this issue. What is sur- 
prising is that many people who should 
know better are not aware of the fact 
that the question is devoid of meaning. 
Until we have defined what we mean 
by a "machine," what is meant by 
"think," and, particularly, what is meant 
by "can," all we can agree on is 
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that a question-some question-is im- 
plied. In fact, as we shall see, many 
questions are implied. 

To begin with, by "machine" we 
shall mean a digital computer of the 
type commercially available. Others 
may mean a different type of computer 
or device, or even a hypothetical com- 
puter. This is their prerogative. In or- 
der to define "think," we shall employ 
the device used above in connection 
with decision making. Rather than at- 
tempt to define thinking in abstract 
terms, we consider it only in connection 
with certain carefuly delineated types 
of decision processes. We then equate 
levels of thinking processes with levels 
of decision-making processes. Once this 
has been accomplished, it is meaning- 
ful to ask if we are capable of writing 
a digital computer program that can 
carry out a specific decision-making 
process in a stated time. Thus, "can" 
has different meanings, depending upon 
whether we allow a time of 2 minutes, 
2 hours, or 2 years or merely require 
that the time be finite, although not 
predictable. 

For example, in connection with the 
recognition of handwriting in a banking 
firm, or the analysis of x-rays or tissue 
cultures, a time of more than 2 min- 
utes may make the ability of a com- 
puter merely a mathematical curiosity. 
That a computer can be programmed 
to play legal chess or checkers is hardly 
remarkable; that it can learn from ex- 
perience to play master checkers is in- 
teresting and represents a feat of pro- 
gramming. It cannot, at present, learn 
from experience to play master chess, 
and an ability of this type would rep- 
resent an astounding breakthrough in 
the theory of adaptive processes. That 
a computer can produce music which 
we recognize as a poor imitation of 
Beethoven, Mozart, or Bach is hardly 
remarkable; that it can produce an ac- 
cidental tune among countless cacopho- 

nies is again to be expected. If it could 
systematically produce beautiful music 
-that is, "create"-this would repre- 
sent a far more astounding break- 
through in the intellectual domain. Even 
if these breakthroughs should be 
achieved, we would not presume to say 
that we understood what goes on in the 
human brain. We are asking for dupli- 
cation only of the result, not of the 
process. Again, it is anyone's preroga- 
tive to attempt to perform these feats 
on the basis of an analysis of what the 
human mind does, but in the opinion 
of most people, in view of what little 
is known, such an attempt represents a 
foolhardy effort. 

Perhaps the essential point I am try- 
ing to make is that there are levels of 
decision-making processes, and that it 
is therefore important to find systemat- 
ic ways of cataloging these processes. 
The idea of introducing categories of 
processes is borrowed from the method 
used by Russell in mathematical logic, 
the theory of types. This theory enables 
one to construct hierarchies of state- 
ments. 

To give an example of how a hi- 
erarchy can be introduced, let us begin 
by introducing processes on the first 
level. These are processes of the de- 
terministic or stochastic type described 
above. On the second level, we consider 
processes involving learning about the 
structure of the system. A local policy 
is required for making decisions at each 
stage, and a global policy is required for 
modifying the local policy on the basis 
of experience. This is decision making 
about decision making. Choosing a 
global policy is decision making about 
decision making about decision making. 
We can now continue in this fashion. 
Needless to say, a certain amount of 
effort is required to formulate this 
hierarchy precisely. 

This is one particular way of intro- 
ducing a hierarchy. There are other 

ways, and there are always problems 
outside any particular formulation. 
Where, for example, do we place the 
problem of ascertaining the level of a 
specific decision-making process? 

Conclusion 

Little has been done in the study of 
these intriguing questions, and I do not 
wish to give the impression that any 
extensive set of ideas exists that could 
be called a "theory." What is quite sur- 
prising, as far as the histories of science 
and philosophy are concerned, is that 
the major impetus for the fantastic 
growth of interest in brain processes, 
both psychological and physiological, 
has come from a device, a machine, the 
digital computer. In dealing with a 
human being and a human society, we 
enjoy the luxury of being irrational, 
illogical, inconsistent, and incomplete, 
and yet of coping. In operating a com- 
puter, we must meet the rigorous re- 
quirements for detailed instructions and 
absolute precision. If we understood the 
ability of the human mind to make ef- 
fective decisions when confronted by 
complexity, uncertainty, and irration- 
ality, then we could use computers a 
million times more effectively than we 
do. Recognition of this fact has been 
a motivation for the spurt of research 
in the field of neurophysiology. 

The more we study the information- 
processing aspects of the mind, the 
more perplexed and impressed we be- 
come. It will be a very long time before 
we understand these processes suffi- 
ciently to reproduce them. 

In any case, the mathematician sees 
hundreds and thousands of formidable 
new problems in dozens of blossoming 
areas, puzzles galore, and challenges to 
his heart's content. He may never re- 
solve some of these, but he will never 
be bored. What more can he ask? 
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