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pared with the experimental group in 

t-tests, were not significant at the 

5-percent level. 
These results indicate that the onset 

of courtship in this species does not 

depend on proprioceptive feedback 
from sperm-filled palps, as was sug- 
gested by Gerhardt (4). Since the ex- 

perimental groups included spiders 
which could not perform movements 
associated with sperm-web construction, 
or sperm induction, or both, it also 

appears that the male need not carry 
out these acts prior to displaying court- 

ship. Thus, there is no "chain-reflex 
sequence" (6) involved in the sexual 
biology of this spider. The reproduc- 
tive behavior of the male probably is 

regulated instead by maturational 
changes in the gonads, or the central 
nervous system, or both. Such regula- 
tion of sexual behavior has been sug- 
gested for other arthropods (9). 
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Fig. 1. Adult male Lycosa rabida treated immediately after molt to prevent sperm 
induction. (a) Male with autotomized palps. Courtship pattern of palpal movements 
persists in trochanter (arrow) and coxa of each palp. (b) Male with palps fixed 
dorsal to cephalothorax. Both spiders were photographed while under CO2 anesthesia. 
Peculiar appearance of the eyes is due to reflection of the circular flash unit. Scale 
in both photographs is 2 mm. 
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Plans are now well advanced for 

drilling to attain certain scientific ob- 

jectives during the period of engineer- 
ing tests of the Mohole drilling plat- 
form. The Mohole Advisory Commit- 
tees of the National Academy of Sci- 
ences met with representatives of the 
National Science Foundation, sponsor 
of the project, and Brown and Root, 
the prime contractor, in Houston on 
4 and 5 January. 

The Mohole Advisory Committees 
recommended drilling four or more 
holes within a 160-km radius of lat. 
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Fig. 1. Tentative sites for drilling the first four holes (solid circles). Stippling indicates 
areas of positive magnetic anomalies. 
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33?N, long. 127?W, about 650 km west 
of Los Angeles. These holes will be 
drilled to about 300 meters, the depth 
depending on the maximum which can 
be attained with one bit because hole 
reentry will not be feasible. 

The drilling will test the hypothesis 
of ocean floor spreading (1) and the 
generation of long, linear, magnetic 
anomalies according to the Vine-Mat- 
thews hypothesis (2), relating them 
to spreading coupled with reversals of 
the earth's magnetic field. The main 
factual information to be sought will 
be (i) the age of the oldest sediments 
lying upon the harder rock of layer 
2 of the oceanic crust; (ii) the age of 
the top of layer 2, presumably basalt, 
by radiometric age determination; and 
(iii) whether, on magnetic positive and 
magnetic negative residual anomalies, 
the remanent magnetization of the rock 
is normal and reversed, respectively. 

The tentative geographic positions of 
the holes with respect to the magnetic 
anomalies are shown in Fig. 1. The data 
used in compiling it come from mag- 
netic surveys (3) and from Menard's 
physiographic diagram of the area (4). 
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Particle Sorting and Stone 

Migration Due to Frost Heave 

Inglis (1) has recently discussed a 
mechanism for particle sorting and 
stone migration in soils due to freez- 
ing. His explanation is based on the 
expansion accompanying the freezing 
of soil water. He does not consider 
the effects of the motion of soil water 
through the soil during the freezing 
process, that is, the phenomenon 
known as frost heave. Stones, fence 
posts, and other objects can be lifted 
several inches in one thawing and 
freezing cycle by frost heave, whereas 
the normal expansion due to freezing 
of water could result in motion of only 
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Particle Sorting and Stone 

Migration Due to Frost Heave 

Inglis (1) has recently discussed a 
mechanism for particle sorting and 
stone migration in soils due to freez- 
ing. His explanation is based on the 
expansion accompanying the freezing 
of soil water. He does not consider 
the effects of the motion of soil water 
through the soil during the freezing 
process, that is, the phenomenon 
known as frost heave. Stones, fence 
posts, and other objects can be lifted 
several inches in one thawing and 
freezing cycle by frost heave, whereas 
the normal expansion due to freezing 
of water could result in motion of only 

a fraction of an inch. The lifting oc- 
curs when the top part of the stone 
becomes imbedded in the frozen soil 
as it freezes from the top, as described 
by Inglis. Subsequent frost heave in 
the surrounding soil may lift the stone 
several inches. The stone is unlikely 
to resettle precisely into the hole 
where it was, and so net motion of 
up to several inches is possible. This 
phenomenon is particularly noticeable 
in many loamy New England fields, 
which yield an annual crop of stones. 

Soils that heave severely have been 
called "frost-susceptible" and contain, 
according to the Casagrande criterion, 
(2) more than 3 percent of particles 
less than .02 mm in diameter. When 
these soils freeze, water is drawn to 
the freezing front, so that the frozen 
soil contains much more water (in the 
form of ice) than the unfrozen soil (3). 
Volume changes of 300 percent on 
freezing are not unusual. The excess 
water in the frozen soil is in the form 
of layers of ice, called ice lenses, 
which are almost free of soil particles. 
The measured heave of a soil is equal 
to the total thickness of such ice 
lenses (4). 

An essential feature of the frost- 
heave process is the existence of a 
layer of water separating the soil parti- 
cles from the ice in the soil. The 
frozen soil rides on this thin (- 10 A) 
layer, being fed water from the ground- 
water table as the ice freezes (5). The 
energy for the process comes from the 
free energy of the undercooled water 
in the soil near the ice lens. In the 
usual case, ice cannot propagate be- 
tween the soil particles because of 
capillary action on the ice-water inter- 
face (6). When some of the water in 
the water layer between the soil par- 
ticles and the ice freezes, the thickness 
of the water layer being thereby de- 
creased, tension is created in the soil 
water (due to repulsion between the 
ice and particle), which draws water up 
from the ground-water table, 

The theory of frost heave as de- 
veloped by Jackson, Uhlmann, and 
Chalmers (5), based on the ideas out- 
lined above, provides quantitative 
agreement with experiments on frost 
heave (4). 

In addition to the migration of 
stones, there should also be a sorting 
action on fine soil particles (7). Frost 
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wards through the soil, because the 
smallest particles are more easily 
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