
petence. Turbidity currents account for 
the sands and gravels which underlie 
the perfectly flat, strongly reflecting 
abyssal plains, for gravel and sand in 
submarine canyons, and for finer sedi- 
ments in natural levees and abyssal 
cones, but they fail to account for the 
uniform shape and stratification of the 
enormous accumulation of continental 
rise lutite. Massive transport of conti- 
nental rise sediment parallel to the con- 
tours for at least 1500 km is demon- 
strated by the construction of the 
Blake-Bahama Outer Ridge. This illus- 
trates the powerful smoothing potential 
of deep geostrophic contour currents 
in the shaping of the continental rise. 

The thickest sediments in the ocean 
are found beneath or very near the 
axes of deep geostrophic contour cur- 
rents, and these deposits become thin- 
ner with increasing distance from the 
current axes. That this pattern holds 
for all beds from the latest postglacial 
to the underlying basement is demon- 
strated by cores, echograms, deeper- 
penetrating reflection profiles, and deep 
refraction studies. Thus the character- 
istic downslope thinning wedges of sedi- 
ment which, stacked one upon another, 
comprise the continental rise appear to 
gain their shape through controlled 
deposition by deep geostrophic contour 
currents. 
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17 January 1966 

Piezoelectricity in Secondary 

Explosives 

Abstract. A theory for the formation 
of "hot spots" necessary for the initia- 
tion of an explosion is discussed in 
light of experimental evidence that 
most solid explosives are highly piezo- 
electric. 

It is generally accepted that the initia- 
tion of explosion in all explosives, both 
primary and secondary, is connected 
with the formation of "hot spots" (1) 
within those materials. However, up to 
now there has been no really accept- 
able explanation regarding the forma- 
tion of hot spots, and hence the 
question of explosive sensitivity is still 
unresolved. Because of this situation 
we have initiated a program aimed at 
elucidating some of the electrical prop- 
erties of secondary explosives in the 
belief that these properties may be im- 
portant in explosion initiation. 

The fundamental, relatively un- 
known, properties of the secondary ex- 
plosive cyclotetramethylene tetranitra- 
mine (HMX) are now reported. Large 
single crystals of p-HMX were used in 
our experiments. HMX powder free of 
trinitrotriazacyclohexane (RDX) was 
obtained by extracting 98-percent-pure 
HMX (2) with 1,2-dichloroethane for 
24 hours. The product was then dried 
in a vacuum and dissolved in boil- 
ing acetone; the acetone solution was 
cooled at the rate of 3?C per day, a 
rate that usually produced about ten 
large single crystals of 3-HMX. After 
filtration the crystals were dried in air. 

The single crystals of HMX exhibited 
piezoelectricity since a d-c voltage is 
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The single crystals of HMX exhibited 
piezoelectricity since a d-c voltage is 
generated when a load is applied to the 
crystal. This phenomenon was studied 
as a function of the applied load. A 
typical example for 8-HMX is shown 
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in Fig. 1. It is very apparent that the 

generated field depends linearly on the 
applied load. Piezoelectricity was diffi- 
cult to measure for the fi-polymorph 
since it is very soft and usually 
crumbled under the applied loads. The 
8-polymorph crystals were obtained by 
heating the 8-polymorph to about 
250?C and then cooling to room tem- 
perature. The data shows that very 
large electric fields are generated with- 
in these crystals even with the appli- 
cation of a relatively small load; for 

example a field of 10 volts per centi- 
meter was generated by a load of 400 g 
on a crystal whose area was 0.42 cm2. 

Since HMX is a secondary explosive 
it cannot be detonated without either a 
primary detonation of the explosive or 
one of a mechanical nature. If the 
piezoelectric voltage still depends lin- 
early on pressure, in an average pri- 
mary detonation of 500 kbar the gen- 
erated field due to a detonation can be 
of the order of 107 volts/cm. This 
electric field is high enough to cause 
electrical breakdown (electron ava- 
lanche) within the crystal and hence 
to generate localized "hot spots" that 
finally result in explosion. By inspec- 
tion of the crystal structures of RDX, 
TNT, PETN, NH4NO3, NH4Cl04 one 
finds that all these secondary explo- 
sives have crystal structures which 
should exhibit piezoelectricity. This 
same phenomenon could explain some 
of the strange properties of the azides. 
It is well known that lead azide can 
explode while being grown in crystal 
form from solution. It is well estab- 
lished that crystals can be extremely 
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Fig. 1. Generated piezoelectric field as a 
function of applied load on a single 
crystal of 5-HMX at room temperature. 
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strained while growing. Thus one could 
envisage that the strains cause a piezo- 
electric voltage to be generated with 
subsequent explosion. 

Thus some of the hot spots necessary 
for explosion of solid explosives might 
be produced by electrical breakdown 
of the crystal owing to a generated 
piezoelectric field. 
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Isopycnic Centrifugation for 
the Isolation of DNA Strands 

Coding for Ribosomal RNA 

Abstract. Denatured DNA prepara- 
tions from Escherichia coli were centri- 
fuged to equilibrium in cesium chloride 
solutions. Hybridizing experiments with 
radioactively labeled ribosomal RNA 
showed that the DNA strands comple- 
mentary to ribosomal RNA were dis- 
tributed on the heavy side of the DNA 
band. By fractionating this band the 
DNA strands coding for ribosomal 
RNA may be enriched 5- to 20- 
fold. 

When a DNA preparation is centri- 
fuged to equilibrium in a cesium chlo- 
ride solution of appropriate density, 
the CsCl is redistributed in the liquid 
column and forms a density gradient 
in which the macromolecules are con- 
centrated in a zone, or band, at a 
height in the gradient corresponding to 
their buoyant density (1). Native DNA 
exhibits a buoyant density which is in 
general linearly related to the mole 
percentage of guanine and cytosine in 
the molecule (2). When DNA is de- 
natured the separated strands of the 
double helix usually have a buoyant 
density higher than that of the na- 
tive molecules by approximately 0.015 
g/ml. 

Most viruses contain single mole- 
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showed that the DNA strands comple- 
mentary to ribosomal RNA were dis- 
tributed on the heavy side of the DNA 
band. By fractionating this band the 
DNA strands coding for ribosomal 
RNA may be enriched 5- to 20- 
fold. 

When a DNA preparation is centri- 
fuged to equilibrium in a cesium chlo- 
ride solution of appropriate density, 
the CsCl is redistributed in the liquid 
column and forms a density gradient 
in which the macromolecules are con- 
centrated in a zone, or band, at a 
height in the gradient corresponding to 
their buoyant density (1). Native DNA 
exhibits a buoyant density which is in 
general linearly related to the mole 
percentage of guanine and cytosine in 
the molecule (2). When DNA is de- 
natured the separated strands of the 
double helix usually have a buoyant 
density higher than that of the na- 
tive molecules by approximately 0.015 
g/ml. 

Most viruses contain single mole- 
cules of DNA. Such DNA preparations 
show narrow bands in CsCI gradients, 
the sharpness reflecting the lack of 
molecular heterogeneity. In the cases 
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of a few viruses, such as phage a (3, 4), 
it has been found that on denaturation 
each of the complementary strands of 
DNA gives rise to a separate band in 
CsCl instead of one being super-imposed 
on another. It has been suggested that 
pyrimidine-rich strands are denser than 
purine-rich strands and that in these 

bacteriophage DNA's the composition 
of each of the paired strands is so dis- 
parate as to endow the strands with 
differing densities (5), whereas in most 
DNA preparations, presumably fortui- 
tously, the ratio of purine to pyridine 
of all strands is similar and the mole- 
cules in the denatured preparation have 
not been resolved up to the present. 

Analyses of these separated strands 
in the case of bacteriophage a show 
that the ratios of purine to pyrimidine 
bases in the strands are 0.78 and 1.18 
(4). The difference between these ratios 
is less than that which must exist be- 
tween the strand of DNA coding for 
ribosomal RNA and its complementary 
DNA strand [purine pyrimidine = 
0.773 and 1.227, and 0.725 and 1.275, 
for 16S and 23S RNA from E. coli (6)]. 
Experiments were therefore set up to 
test the possibility that the strands of 
DNA coding for the ribosomal RNA 
might be found situated eccentrically 
from the bulk of the denatured bac- 
terial DNA after equilibrium centrifu- 
gation in a CsCI gradient. In this man- 
ner a preparation of DNA enriched in 
molecules coding for the ribosomal 
RNA might be obtained. 

Preparations of H3-labeled DNA 
were made from Escherichia coli B3 
grown in a tris-glucose-casamino acid 
medium supplemented with H.-thy- 
mine. Cells (5 X 108 per milliliter) 
were centrifuged and resuspended in 
0.O1M acetate buffer, pH 5.4, and 
lyzed by addition of sodium dodecyl 
sulfate (SDS) solution (to a final 
concentration of 2.0 percent SDS) to- 
gether with washed bentonite (7) (to 
0.5 mg/ml). An equal volume of neu- 
tral redistilled phenol was added to the 
mixture of bacteria and SDS, and after 
vigorous shaking the two phases were 
separated by centrifugation. The upper 
phase was removed and shaken a second 
time with fresh phenol; after centrifu- 
gation the nucleic acids were precipi- 
tated from the upper phase by addition 
of NaCI (final concentration 0.1 mole/ 
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mine. Cells (5 X 108 per milliliter) 
were centrifuged and resuspended in 
0.O1M acetate buffer, pH 5.4, and 
lyzed by addition of sodium dodecyl 
sulfate (SDS) solution (to a final 
concentration of 2.0 percent SDS) to- 
gether with washed bentonite (7) (to 
0.5 mg/ml). An equal volume of neu- 
tral redistilled phenol was added to the 
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separated by centrifugation. The upper 
phase was removed and shaken a second 
time with fresh phenol; after centrifu- 
gation the nucleic acids were precipi- 
tated from the upper phase by addition 
of NaCI (final concentration 0.1 mole/ 
liter) followed by two volumes of 
ethanol. The nucleic acids, redissolved 
in 0.01M EDTA ethylenediaminetetra- 
acetate, pH 7.5, were treated with 
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