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Analysis of the Dynamics of a 

Rigid Ellipsoidal Planet 

Abstract. The second-order nonlinear 
differential equation for the rotation of 
Mercury implies locked-in motion when 
the period is within the range 

2 1--X cos2t 
? 

I 
(21xe/2)I 

where e is the eccentricity and T is the 

period of Mercury's orbit, the time t 
is measured from perihelion, and A is 
a measure of the planet's distortion. For 
values near 2T/3, the instantaneous 
period oscillates about 2T/3 with period 
(21Ae/2)-1T. 

Radar (1) and visual (2) observa- 
tions of the planet Mercury indicate a 
rotation period Tr =58.4 ? 0.4 days, 
close to 2/s of the orbit period T = 
87.97 days. Colombo (3) and Liu and 
O'Keefe (4) have surmised that a 
stable "locked-in" motion of this type 
can occur as a result of the inverse- 
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to the equations that govern the rotation 
of a rigid distorted planet has been dem- 
onstrated by Liu and O'Keefe by means 
of digital computations. In this report 
we present approximate analytic for- 
mulas that may afford further physical 
insight into the character of locked-in 
motion, that could facilitate the inter- 

pretation of observational data, and that 
indicate the dependence of the results 
upon the various parameters of the 
model. For simplicity, and for clarity 
in exposition, the analysis is carried to 
no higher order than is required to 
exhibit the salient features of the phe- 
nomenon. 

The differential equation for the 
orientation, 0, of the planet is given by 
equation 4 of the report by Liu and 
O'Keefe (4). In terms of the variable 
r = 27rt/T it becomes, after insertion 
of the equation for the Keplerian orbit 
(7) of eccentricity e, 

d2o+ 3 1 + e cosf()r) 
dra 2L 1 - e I X 

sin 2[0 -f(r)l = 0 (1) 

with the largest of the principal mo- 
ments of inertia (C) taken perpendic- 
ular to the orbital plane, X (B - 

A)/C measuring the difference between 
the two smaller moments of inertia (B 
and A). and f denoting the true an- 
omaly. (Since damping effects have 
been ignored in this analysis, Eq. 1 
is derivable from a simple Hamiltonian 
function, with periodic coefficients, in 
which p = dO/dr is the canonical mo- 
mentum conjugate to 0, and Liouville's 
theorem concerning the conservation of 
phase-space area applies to the variables 
0 and p.) 

Substitution of the explicit variation 
of the true anomaly with time, as given 
by 

f(r) =r +2e sinr (2) 

through the first-order term in e, con- 
verts Eq. 1 to the approximate form 

+ -- X [( + 3 e cosr)sin 2(0 - r)- 

4e sin r cos 2(- r)] 0 (3) 

which forms the basis of the remainder 
of our analysis. [It is noted, from Eq. 2, 
that r is to be regarded as measured 
from the time of perihelion passage, 
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For X2 < 1, an approximate particular 
integral to the inhomogeneous Eq. 6 is 
readily obtained, and the solution to 
the corresponding linear homogeneous 
equation may be derived (8) by ignor- 
ing terms of average value zero in the 
coefficient of /. The solution thus in- 
cludes a periodic motion, of period T, 
and a long-period oscillation of am- 
plitude ao: 
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For X2 < 1, an approximate particular 
integral to the inhomogeneous Eq. 6 is 
readily obtained, and the solution to 
the corresponding linear homogeneous 
equation may be derived (8) by ignor- 
ing terms of average value zero in the 
coefficient of /. The solution thus in- 
cludes a periodic motion, of period T, 
and a long-period oscillation of am- 
plitude ao: 

3 1 
- X(sin - --Ie sin 2r) + 2 8 

aosin[( - Xe) +r - a 
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or, for ao < 7r, 

37rt 3 2rt 1 47rt 
0=-- + 2 X(sin - e sin ) + T 2 T 8 s 

aosin [( 2-Xe) T+ ] (7b) 

where ao and a, are arbitrary constants. 
If ao is not small, so that the slow 

excursions of y preclude linearization, a 
similar averaging of the coefficient of 
sin 2- in Eq. 5 suggests that these oscil- 
lations are essentially described by an 
equation of the form applicable to the 
motion of a physical pendulum: 

d2In 21 
dr + -- 4 X e sin 2- = 0 (8) 

for which one may write the first in- 
tegral 

() 21X e cos 2 - c (9) 2 dt 8 

where c is a constant. With the excur- 
sions of ? limited to ?- r/2 for oscilla- 
tory motion, the maximum value that 

SCIENCE, VOL. 151 

or, for ao < 7r, 

37rt 3 2rt 1 47rt 
0=-- + 2 X(sin - e sin ) + T 2 T 8 s 

aosin [( 2-Xe) T+ ] (7b) 

where ao and a, are arbitrary constants. 
If ao is not small, so that the slow 

excursions of y preclude linearization, a 
similar averaging of the coefficient of 
sin 2- in Eq. 5 suggests that these oscil- 
lations are essentially described by an 
equation of the form applicable to the 
motion of a physical pendulum: 

d2In 21 
dr + -- 4 X e sin 2- = 0 (8) 

for which one may write the first in- 
tegral 

() 21X e cos 2 - c (9) 2 dt 8 

where c is a constant. With the excur- 
sions of ? limited to ?- r/2 for oscilla- 
tory motion, the maximum value that 

SCIENCE, VOL. 151 



drl/dr can assume for locked-in motion 
(9) occurs when 7- = 0, and is 

2 Id/drl,nax = ( - xe)- 

With inclusion of the contributions 
from the first terms on the right-hand 
side of Eq. 7b, therefore, the values of 
dO/dt for locked-in motion are ex- 
pected to lie between the limits 

Fdel 
Ldt Illn ax,min 

3- 1 + X cosT + - (- -- e)] (10) 

where we have neglected the term pro- 
portional to Xe. 

The foregoing analysis serves to con- 
firm that locked-in rotational motion 
with a period approximately 2/3 the 
period of revolution is dynamically 
possible. The form of the solution 
shown in Eq. 7b suggests, however, that 
observations of the rotation will indi- 
cate rates that vary during the course 
of a planetary year and that, in addi- 
tion, slower variations of the rotational 
rate may occur with a period given by 

21 
Tlib -= ( 2 Xe)- T (11) 

when the amplitude (ao) of this libra- 
tion is not large. An expression of the 
form given by Eq. 7b may be useful 
for interpretation of data obtained by 
the sequential observation of surface 
features on the planet. More simply, the 
instantaneous periods-as could be in- 
ferred from radar observations-would 
be (by differentiation of Eq. 7b when 
the term proportional to Xe is neglected) 

2ir Ti = 
i de/dt 

-2 1 27rt 2 21 -- -X cos - -a (TXe)' X 3 T 3 2 

cos[(3Xe)22-t+ a] } T (12) 

for ao small, and, for any ao compatible 
with locked-in motion, would lie be- 
tween the limits obtained from Eq. 10: 

Tr,] L- J max,min 

- [--Xcos 27-t 2-( Xe) T (13) 3 Os T ; 3 ( 2 ) ]3 (3 ) 

For favorable values of ao a determina- 
tion of X may be feasible through ob- 
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action of damping mechanisms-the 
term 

2 2wrt --X cos -T 
3 T 

in Eq. 12 will represent the larger con- 
tribution to the variation of the instan- 
taneous period. 

Substitution of the values T - 87.97/ 
365 yr, e = 0.2, and X = 5 X 10- , as 
suggested by Liu and O'Keefe (4), into 
Eq. 11 leads to a libration period T,1, 
= 23.5 yr for small-amplitude varia- 
tions, in substantial agreement with 
their compuitational results. Correspond- 
ingly, from the last term of Eq. 13, the 
maximum variation of the instantaneous 
period of rotation that could arise from 
this libratory motion would be approx- 
imately ? 0.40 day, in good agreement 
with recent computational results of Liu 
and O'Keefe (10). It is highly unlikely, 
of course, that such large variations are 
now actually occurring, because of the 
damping that would have resulted from 
tidal effects. 

Although the detailed results pre- 
sented in this report have been with 
reference to motion for which the rota- 
tion period is close to 2/3 the period 
of revolution, the existence of other 
stable modes of locked-in motion 
should not be overlooked. The possible 
range of variation for the rotational 
speed in general will be substantially 
smaller for the higher-order modes, for 
reasonable values of the parameter A, 
and this feature will have significant 
implications concerning the magnitude 
of the damping present at times when 
the speed of planetary rotation may 
have been considerably greater than 
that now observed. Lower limits, which 
depend on X, can be set to the rate of 
decrease of the rotational energy 
through the agency of damping if the 
rotational motion has passed through 
the higher-order modes during the past 
history of the planet. Similarly, an up- 
per limit can be set on the amount of 
damping that will permit the rotation 
to remain locked in to the mode ana- 
lyzed in this report. Other work (11) in- 
dicates, moreover, that damping torques 
acting at present would shift the phase 
of the periodic solutions presented here, 
and this result suggests that information 
concerning the current magnitude of 
such torques may be inferred from 
more detailed observation of the rota- 
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Soil-Water Potential: Direct 
Measurement by a New Technique 

Abstract. Current methods of meas- 
uring the potential of water in soil are 
inadequate. It is proposed to depress the 
reference free energy of water by a 
predetermined amount from the stan- 
dard level of pure free water at atmo- 
spheric pressure by use of a solute. The 
specific free-energy difference of soil 
water from the depressed reference can 
be measured as a pressure. 

A long-standing problem in studies 
of water relations in unsaturated soils 
is the accurate measurement in situ of 
the potential of soil water. This poten- 
tial, which is usually measured in units 
of pressure, is negative with respect to 
that of the standard reference state: 
pure free water at atmospheric pres- 
sure. 

Soil-water relations are usually stud- 
ied in an agricultural context where the 
range of water potentials of practical 
interest for plant growth is very rough- 
ly 0 to -15 atm (1). Currently avail- 
able instruments for measuring water 
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Soil-Water Potential: Direct 
Measurement by a New Technique 

Abstract. Current methods of meas- 
uring the potential of water in soil are 
inadequate. It is proposed to depress the 
reference free energy of water by a 
predetermined amount from the stan- 
dard level of pure free water at atmo- 
spheric pressure by use of a solute. The 
specific free-energy difference of soil 
water from the depressed reference can 
be measured as a pressure. 

A long-standing problem in studies 
of water relations in unsaturated soils 
is the accurate measurement in situ of 
the potential of soil water. This poten- 
tial, which is usually measured in units 
of pressure, is negative with respect to 
that of the standard reference state: 
pure free water at atmospheric pres- 
sure. 

Soil-water relations are usually stud- 
ied in an agricultural context where the 
range of water potentials of practical 
interest for plant growth is very rough- 
ly 0 to -15 atm (1). Currently avail- 
able instruments for measuring water 
potential in this context are inadequate 
because of limited range and accuracy 
(2; 3, p. 64); they measure either the 
pressure of water in equilibrium with 
soil water, or an electrical property of a 
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