
rum prepared in only one species is 
used. With the homologous antiserum 
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was absent when the virus was tested 
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adjuvant or to adjuvant alone. Using 
the more potent monkey and guinea- 
pig antiserums, we detected more than 
one line of precipitation in virus from 
either the plasma or tissue culture. 
The monkey antiserum was capable 
of revealing at least two similar anti- 

gens in virus from fresh, unconcen- 
trated plasma or spleen extract of in- 
fected mice. 

A cross reaction with one antigen 
of the Rauscher virus was observed 
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viruses were tested with monkey anti- 
serum to Rauscher virus. It does not 

necessarily follow that these antigens 
are identical, since tests with antise- 
rums to Friend and Moloney viruses 
have not been made; but there is a 

suggestion of similarity of one Rau- 
scher antigen to an antigen occurring 
in the other strains. It is odd, how- 

ever, that, in six attempts, a cross- 
reaction between the Moloney and 
Rauscher antigens could not be dem- 
onstrated with guinea-pig antiserum 
which had a neutralizing antibody titer 

against Rauscher virus as high as that 
in the monkey, and which was capable 
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(12) has postulated that the leukemic 
cells derived from mice infected with 
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The microscale Ouchterlony test, as 

described, is useful for virus detec- 
tion and holds potential for elucidat- 

ing further the antigenic structure of 
the murine leukemia viruses. 

MARY ALEXANDER FINK 
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National Cancer Institute, 
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Acidosis: Effect on Lipolytic 

Activity of Norepinephrine 
in Isolated Fat Cells 

Abstract: Lowering of pH from 7.40 
to 6.60 significantly decreased the rate 

of glycerol formation in fat cells incu- 
bated with either 1-norepinephrine or 

theophylline. When these cells were in- 
cubated with both 1-norepinephrine 
and theophylline, the glycerol forma- 
tion proceeded at maximal rate and 
was quite similar at pH 7.40 and 6.60. 
These results indicate that the inhibi- 

tory effect of acidosis on the lipolytic 
action of l-norepinephrine is exerted on 
the process which activates lipase. 

Experiments in vivo and in vitro 
have indicated that the increases in 
free fatty acid (FFA) and glycerol 
concentrations, which follow epineph- 
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The microscale Ouchterlony test, as 

described, is useful for virus detec- 
tion and holds potential for elucidat- 

ing further the antigenic structure of 
the murine leukemia viruses. 

MARY ALEXANDER FINK 
CAROLYN A. COWLES 

Laboratory of Viral Oncology, 
National Cancer Institute, 
Bethesda, Maryland 

References and Notes 

1. F. J. Rauscher, J. Nat. Cancer Inst. 29, 515 
(1962). 

2. -- and B. V. Allen, ibid. 32, 269 (1964). 
3. R. F. Zeigel and F. J. Rauscher, ibid. 30, 207 

(1963). 
4. M. A. Fink and R. A. Malmgren, ibid. 31, 

1111 (1963). 
5. Obtained from the R. B. Jackson Laboratory, 

Bar Harbor, Maine. 
6. M. A. Fink and F. J. Rauscher, J. Nat. Can- 

cer Inst. 32, 1075 (1964). 
7. Obtained from the John L. Smith Memorial 

Laboratory of Chas. Pfizer and Co. under 
contract with the NCI. 

8. R. A. Manaker, E. M. Jensen, W. Korol, J. 
Nat. Cancer Inst. 33, 363 (1964). 

9. A. J. Crowle, Immunodifusion (Academic 
Press, New York, 1961), p. 223. 

10. Very recent work in this laboratory indicates 
that the Balb/c antiserum contains antibody 
reactive with two or three antigens in plasma 
from mice infected with Rauscher virus. 

11. We thank Drs. T. Breyere, R. Tyndall, and R. 
A. Manaker for these preparations. 

12. L. J. Old, E. A. Boyse, E. Stockert, Nature 
201, 777 (1964). 

13. M. A. Fink, F. J. Rauscher, M. Chirigos, in 
Proceedings-Workshop on Prospects for Con- 
trol of Viral Induced Tumors by Immu- 
nological Methods and Chemotherapy, W. 
J. Burdette, Ed. (University of Utah Press, 
Salt Lake City, 1965). 

31 August 1965 

Acidosis: Effect on Lipolytic 

Activity of Norepinephrine 
in Isolated Fat Cells 

Abstract: Lowering of pH from 7.40 
to 6.60 significantly decreased the rate 

of glycerol formation in fat cells incu- 
bated with either 1-norepinephrine or 

theophylline. When these cells were in- 
cubated with both 1-norepinephrine 
and theophylline, the glycerol forma- 
tion proceeded at maximal rate and 
was quite similar at pH 7.40 and 6.60. 
These results indicate that the inhibi- 

tory effect of acidosis on the lipolytic 
action of l-norepinephrine is exerted on 
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Experiments in vivo and in vitro 
have indicated that the increases in 
free fatty acid (FFA) and glycerol 
concentrations, which follow epineph- 
rine or norepinephrine administration, 
are significantly inhibited by acidosis (1). 
We now report on the mechanism of 
the inhibitory effect of acidosis on nore- 

are significantly inhibited by acidosis (1). 
We now report on the mechanism of 
the inhibitory effect of acidosis on nore- 

Norepinephrine (6) Theophylline (8) 

+ 

Adenyl Cyclase (5) Phosphodiesterase (7) 
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Fig. 1. Mechanism of lipase activation 
(this diagram does not include possible 
intermediate steps). 

pinephrine-induced lipolysis in vitro. 
Isolated fat cells were used for the study 
because the lipolytic activity in cell-free 

homogenates indicates a potential ability 
to release FFA (2) rather than the 

physiological level at which the lipolytic 
process is functioning (3). According 
to recent findings (4) the lipolytic proc- 
ess in the fat cell depends apparently 
upon the activity of at least three en- 

zymes: adenyl cyclase, which forms 

cyclic 3', 5'-adenylic acid (3', 5'- 
AMP) (5) and is stimulated by cate- 
cholamines (6); phosphodiesterase, 
which inactivates cyclic 3', 5'-AMP 
(7) and is inhibited by theophylline 
(8); and lipase, the activity of which 

depends upon the actual amount of 

cyclic 3', 5'-AMP (9) (Fig. 1). The pur- 
pose of the present experiments was 
to determine whether it is lipase, or 
the process activating lipase, which is 
inhibited by acidosis. The rate of glyc- 
erol production was taken as an index 
of lipase activity. 

Epididymal fat pads were taken 
from male Sherman rats that had been 

permitted free access to food until they 
were decapitated. Isolated fat cells, 
prepared as described by Rodbell (10), 
were incubated at 37?C in a Krebs- 
Ringer phosphate buffer containing 5 

percent bovine albumin, fraction V. 
The pH of this medium was ad- 
justed either to pH 6.60 or to pH 
7.40 (11), and the ratio of cells to 
medium was 1 ml of packed cells to 20 
ml of medium. Suspensions 'of cor- 
responding fat cells were incubated 
separately for each interval of time. 
Glycerol concentration (12) in the 
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7.40 (11), and the ratio of cells to 
medium was 1 ml of packed cells to 20 
ml of medium. Suspensions 'of cor- 
responding fat cells were incubated 
separately for each interval of time. 
Glycerol concentration (12) in the 
media was determined at the end of 
the incubation period (13). 

In the first experiments the fat cells 
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lines have the same slope, indicating 
that in both cases lipase was com- 
pletely activated. By contrast, at pH 
6.60 complete activation of lipase was 
not achieved by inhibiting phospho- 
diesterase only, as it was at pH 7.40. 
Both stimulation of adenyl cyclase and 
inhibition of phosphodiesterase were 
necessary for complete activation of 
lipase at pH 6.60. 

These results indicate that lipase, 
if completely activated, has the same 
lipolytic activity at pH 6.60 and pH 
7.40 and, in this sense, is not re- 
sponsible for the decreased lipid-mobi- 
lizing effect of catecholamines in in- 
tact fat cells at lower pH. However, 
the process, that is, the formation of 
cyclic 3', 5'-AMP by adenyl cyclase 
(15) which activates lipase is pH-de- 
pendent. It is this formation which 
would be inhibited by acidosis and 
could account for the decrease in the 
mobilization of lipids by catechola- 
mines at low pH. 

L. TRINER 
G. G. NAHAS 

Department of Anesthesiology, College 
of Physicians and Surgeons, 
Columbia University, New York 
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Fig. 2. Release of C1 02 by corn root tips 
after a 2-hour fixation period. Phase 2 
represents steady state decarboxylation of 
the C"02 fixation metabolites. MV, milli- 
volts; 3300 dpm are equivalent to 1 mv. 
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Fig. 3. Change in optical density (O.D.) 
per gram of tissue (fresh weight) for 
complete coupling reaction mixture (2 
,tmole PEP, 10 lmole NaHCO:, 10 ,mole 
MgCL, 0.256 Amole DPNH, 0.4 ml of 
enzyme preparation; with and without 0.37 
fmole TPN). It was assumed that the 
slower apparent rate of DPNH oxidation 
in the presence of TPN was due to reduc- 
tion of TPN. The reduction of TPN was 
due to the TPN-mediated enzymic decar- 
boxylation of the initial product, malic 
acid, formed by PEP carboxylase coupled 
with DPN malic dehydrogenase.. 
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