
Mars: Radar Observations 

Abstract. Radar studies of Mars indicate that certain areas are quite smooth. 

Rough, strongly reflecting regions have also been found, as well as poorly re- 
flecting ones. Mars as a whole is significantly smoother to radiation of 12.5-centi- 
meter wavelength than Venus. 

Mars was once again the object of 
radar study during its recent opposition 
(1). The planet was observed almost 
every night during February, March, 
and half of April by a small group at 
the Jet Propulsion Laboratory's Gold- 
stone Tracking Station. 

An echo of a very narrow band was 
received from the region of Trivium 
Charontis (longitude 180? to 200?); 
reception ended abruptly when the 

neighboring area of Elysium was the 

target. One may conclude that there is 
a very smooth, strongly reflecting area, 
extending 20? to 30? in longitude and 
of unknown latitudinal extent, in the 
region of Trivium Charontis. 

A similar sequence of echoes, of 
wider band, was received from the re- 
gion of Nodus Laocoontis (240? to 
250?). Surprisingly, the northern tip 

of Syrtis Major did not show a strong 
echo, and the dark markings Ascraeus 
Lacus and Albis Lacus returned the 
weakest echoes. The large "desert" re- 

gion Amazonis was also a poor reflector. 
Mars is a much more difficult radar 

target than Venus (2). The received 

power is less by a factor of almost 100, 
and the signal spectrum is broader (be- 
cause of the larger Doppler effect) by 
a factor of over 200. Because of the 

extremely weak, diluted nature of the 
echoes, only spectral analysis was at- 

tempted. That is, spectrally pure waves 
were transmitted, and the spectra of the 
received signals were measured. The 
echoes were not spectrally pure; they 
were considerably broadened because of 
the Doppler effect resulting from the 
rapid rotation of Mars. 

The result of spectral analysis of the 
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echo is the same as the result that would 
be obtained by scanning the disk of 
Mars with a very fine, fan-beam anten- 
na oriented parallel to the rotation axis. 
Thus, even though the real antenna 
beam is hundreds of times wider than 
the disk of Mars, spectral analysis tech- 
nique permits the echoes from different 
regions of Mars to be isolated for study. 
Figure 1 shows contours of constant 
frequency shift which are caused by the 
rotation of Mars. 

If Mars were very shiny (to 12.5-cm 
radar waves), most of the echo would 
originate from the central, or sub-Earth 
area. The corresponding spectrum 
would then be highly peaked in the 
region of zero frequency shift. As is 
shown below, this was the case for cer- 
tain portions of Mars. 

The radar parameters have been im- 
proved: transmitted power, 100 kw; an- 
tenna gain (two-way, including losses), 
108.5 db; wavelength, 12.5 cm; system 
noise temperature, 27?K. 

The experimented procedure consist- 
ed of transmitting to Mars for a period 
of 11 minutes (the round trip time of 

electromagnetic waves) and then receiv- 

ing for 11 minutes. The frequency spec- 
trum of the signal was then measured 
with an instrument of 3700-cy/sec 
bandwidth and 84-cy/sec resolution. 
The limb-to-limb Doppler broadening 
which Mars produces in the signal is 
7670 cy/sec; thus the small amount of 

power which is returned outside of the 

3700-cy/sec bandwidth is not detected. 

Altogether, almost 1300 such 11- 
minute runs were made. The signal was 
too weak to be detected clearly in any 
one run. However, when runs were 
averaged, positive detection was ob- 
tained. All of the runs were assorted 
into 36 sets, according to the 10? in- 
terval of Martian longitude which was 
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Fig. 2. Mars spectrogram, longitude 180? to 190?. 
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Fig. 3. Mars spectrogram, longitude 190? to 200?. 
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facing Earth at the time. The runs in 
each set were then averaged. The result 
is a set of 36 spectrograms, each corre- 
sponding to a different point of view of 
Mars. The latitude of the sub-Earth 
point was nearly constant (+21?) dur- 
ing the entire experiment. 

Most of the spectrograms show a 
small amount of power reflected diffuse- 
ly by the disk. Some of them, however, 
show relatively strong, narrow-band re- 

flections which originate from an area 
less than 2? in extent about the sub- 
Earth point. 

Figures 2 through 5 are samples of 
these spectrograms from successive 10? 
strips of Mars. The narrow-band echo 
increases, reaching a maximum at 200? 
to 21,0? (the region of Trivium Charon- 
tis), and then it drops off quite abruptly. 
Figure 6 is a sample of a wider-band 
echo from the region of Laocoontis. 

Figure 7 is a plot of power density 
versus longitude. It was obtained by 
scaling the height at the center fre- 
quency of each spectrogram. This curve 
represents the power which would be 
measured if Mars were observed 
through a narrow-band filter. Figure 8 
is a plot of the total power received as 
a function of Martian longitude, ex- 
pressed in terms of the radar cross- 
section. Because some of the reflected 
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Fig. 4. Mars spectrogram, longitude 200? to 210?. 
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Fig. 5. Mars spectrogram, longitude 210? to 220?. 
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Fig. 6. Mars spectrogram, longitude 240? to 250?. 
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Fig. 7. Power density versus longitude. 
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power was beyond the spectrometer 
bandwidth, this must be considered as a 
lower bound. The curve was obtained 
by scaling the area under each spectro- 
gram. The --r marked on these curves 
is the result of both calculation and 
measurement; the agreement between 
the two is excellent. 

All of the runs of the experiment 
were averaged together to produce the 
average Mars spectrogram shown in 
Fig. 9. Because so many runs have been 
averaged, the -+? interval has been re- 
duced to a very small value. The asym- 
metry in this spectrogram may be ex- 
plained in two ways. (i) The surface 
may have a slightly preferred slope, as 
sandy places on Earth have when winds 
from a preferred direction ruffle the 
surface. (ii) The spectrogram is the 
result of the integration of hundreds of 
hours of signal plus noise and the sub- 
traction of an equally long (but inter- 
leaved) integration of noise only. The 
asymmetry of the spectrogram may be 
the result of some residual instability of 
that process. 

R. M. GOLDSTEIN 
Jet Propulsion Laboratory, 
California Institute of Technology, 
Pasadena 91103 
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Theory of Rotation for the 

Planet Mercury 

Abstract. The theory of the rotation 
of. the planet Mercury is developed in 
terms of the motion of a rigid system 
in an inverse-square field. It is possible 
for Mercury to rotate with a period ex- 
actly two-thirds of the period of revo- 
lution; there is a libration with a period 
of 25 years. 

By radar, Pettengill and Dyce (1) 
have observed that the rotation of the 

planet Mercury is direct with a sidereal 

period of 59 ? 5 days. McGovern et al. 
(2) have refined this value to 58.4 ?+ 

0.4. Mercury's period of revolution is 
87.97 days; for synchronous rotation 
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retical implications. The role of tidal 
torque and tidal friction in bringing 
Mercury to this period has been calcu- 
lated by Peale and Gold (3), and by 
Goldreich (4). 

The torque exerted by the sun on 
Mercury arises from a term in the 
potential which varies inversely with the 
cube of the distance. For an eccen- 
tricity of 0.2, the variation between 
perihelion and aphelion in this term 
is a factor of 3.4. Hence, as pointed 
out by Peale and Gold (3) and by 
Goldreich (4), the rotation of Mer- 
cury tends to be controlled by the situ- 
ation at perihelion; it tends to rotate 
so as to match the rotation velocity 
with the instantaneous orbital angular 
velocity at perihelion or near it. 

But since the period demanded by 
this condition is nearly two-thirds of 
the orbital period, it is reasonable to 
ask whether a resonance lock is pos- 
sible at exactly two-thirds of the orbital 
period, or 58.65 days. This seems plaus- 
ible because the second-harmonic term 
in the planetary potential will have fore- 
and-aft symmetry; up to the second 
degree, the two ends of the axis of 
minimum moment of inertia behave in 
the same way in the gravitational field 
of the sun. Colombo (5) has already 
surmised that the lock is possible; our 
own work was begun before we were 
aware of his. 

If A < B < C are the principal mo- 
ments of inertia at time t, and if C is 
taken perpendicular to the orbit plane, 
then the potential energy of the planet 
Mercury is, by MacCullagh's formula 

-K M K (A + B - C-31) v-= - (1) r 2r3 

where K is the gravitational parameter, 
M is the mass of Mercury, and I is the 
moment of inertia around the radius 
vector r 

I = A cos2 0 + B sin 0 (2) 
where ( is the angular displacement of 
the principal axis, A, in the counter- 
clockwise direction as seen from north, 
from the position vector, r. 

The Lagrangian of Mercury's motion 
is 

L M 1/ (dFr) 2 2 df) j 

+ C( + 2df2 
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The instantaneous mption of the 
planet Mercury is described by 

r = a(1 l-e2)/(l + e cos f) (5) 

where a is the semimajor axis and e 
the eccentricity of the orbit. From the 
law of invariant areal velocity, the or- 
bital angular momentum, h, is 
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where X = (B - A) C. 
In a circular orbit (e = 0) and in 

the case of a body with dynamic sym- 
metry and the axis of symmetry per- 
pendicular to the plane of the orbit 
(A 0), Eq. 7 can be integrated by 
quadratures. Hence for small e and A, 
one can find an approximate expression 
for the solution of this equation, work- 
ing from the Poincare small-parameter 
method or the Krylov-Bogolyubov 
averaging method. Since e = 0 and 
X = 0 represents a nonintegrable case, 
only qualitative investigation and nu- 
merical analysis of Eq. 7 appear to be 
readily obtainable. 

By repeated numerical integration of 

Eq. 7 over a period of 100 years we 
find that for A - 0.00005 (that is, some- 
what less distortion than the moon) 
Mercury will lock at an average period 
of 58.65. The instantaneous period os- 
cillates with an amplitude of the order 
of 0.008 days and a period of 25 years. 

HAN-SHOU LIU 

JOHN A. O'KEEFE 
Goddard Space Flight Center, 
Green belt, Maryland 
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