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Gravitational Collapse and tt 
Death of a St2 

Relativity and nuclear theory together predict the fz 
of a star which has burned all its nuclear fu 

Kip S. Thor 

What is the fate of a star when it 
has consumed all its nuclear fuel and 
can no longer maintain the nuclear 
reactions which have sustained it 
since its birth? This is a question 
which observational astronomy has 
done but little to answer. The time 
required for a star to consume its 
nuclear fuel is so long (many billions 
of years in most cases) that only a 
few stars die in our galaxy per cen- 
tury; and the evolution of a star from 
the end point of thermonuclear burn- 
ing to its final dead state is so rapid 
that its death throes are observable for 
only a few years. 

Despite the paucity of observation- 
al data, theoreticians are now able to 
discuss the deaths of stars in ever in- 
creasing detail and with a fair degree 
of certainty, thanks to recent advances 
in computer technology and in our 
understanding of the physics of the 
atomic nucleus, of elementary par- 
ticles, and of Einstein's geometrical 
theory of gravitation (general relativity). 
The purpose of this article is to re- 
view the different types of death and 
the final resting states of various types 
of stars, as deduced theoretically, and 
to point out those few direct astro- 
nomical observations which have bear- 
ing on the theoretical predictions. 

Additional observational 
predictions, while extre 
and perhaps impossible 
day technology, we 
valuable tests of the g 
nuclear theory upon w 
dictions rest. 

It should be emphasiz 
set that theoretical st 
deaths of stars are still 
plete. Such complicatic 
rotation, deviations from 
metry, and stellar magi 
largely unstudied and v 
here. Rough estimates 
these phenomena, when 
nounced, will probably 
fect on the qualitative F 
here; for the most part, 
tive details are expectec 
theoretical studies becon 
tic. 

Evolution to the Dead 

When, after hundreds 
billions of years of n 
burning, a star has exhai 
of nuclear fuel, it has 
to replenish the thermal 
is radiating: quasi-stati 
contraction. As it cont 
converts its gravitationa 
ergy into thermal energ 
it away, and at the 
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squeezes the material in its core into a 
smaller and smaller volume and to 
higher and higher temperatures. 

The subsequent fate of the star de- 
pends upon how massive it is. For a ie star of less than -1.2 solar masses 
[the "Chandrasekhar limit" (1)], quasi- 

Ir static contraction is halted by rising 
internal pressure when a central den- 
sity of 100" grams per cubic centi- 

ite meter is reached. The star then settles 
down into its final resting state, a el. "white dwarf" configuration (2). On 
the other hand, in a star of more than 

rne 1.2 solar masses, the stellar core is 
squeezed to such high densities during 
quasi-static contraction that catastroph- 
ic nuclear processes occur before rising 
internal pressure can halt the contrac- 

tests of these tion. These processes cause the star to 
emely difficult explode with such violence that its 

with present- luminosity approaches that of a galaxy 
)uld provide for a period of about 100 days 
;ravitation and [supernova explosion (3)]. 
'hich the pre- The precise physical processes which 

initiate and accompany a supernova 
:ed at the out- explosion are probably different in 
tudies of the stars of between 1.2 and about 5 solar 
far from com- masses from those in more massive 
ons as stellar stars. I shall first describe the mechan- 
spherical sym- ism by which the less massive super- 

netic fields are novae are produced by tracing out the 
vill be ignored death of a representative 2-solar-mass 

indicate that star, as predicted by theoretical cal- 
not too pro- culations. Then I shall turn my atten- 

have little ef- tion to the more massive supernovae. 
)icture outlined A star of 2 solar masses reaches 
only quantita- the end point of thermonuclear burning 

1 to change as when it has converted all of the hydro- 
ne more realis- gen in its interior to Fe t, the most 

tightly bound of all nuclei. At this 
point the star begins to contract quasi- 
statically, compressing the matter in its 

State center into a smaller and smaller 
volume. 

of millions or Now, we know from elementary 
lormal nuclear quantum theory that the smaller the 
usted its supply region to which we confine a particle, 
only one way the larger the particle's zero-point ki- 
energy that it netic energy becomes. In particular, 

c gravitational when a particle is confined to a re- 
tracts, the star gion of the order of its Compton wave- 
Ll potential en- length, its zero-point energy becomes 
;y and radiates of the order of its rest mass; and be- 
same time it yond this point the zero-point energy 
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collapsing core is suddenly faced with 
a huge central pressure, which calls its 
collapse to a halt and sends a shock 
wave propagating outward through it. 

too...... 100% In this core shock front the huge ki- 
5 >- -netic energy of collapse is converted 

:,, nO^^i into heat, and temperatures of over 10 

~..*a?CX, nl 
, 

- billion degrees are reached. At such 

ae^s=^ 
"^ 

~~--.-^JL^^^ ~ C 5-, 
' ~1^ high temperatures and densities, ele- 

_ 0oasa^ 5'% mentary particle ,transformations pro- 

2 
. * ceed at a rapid rate, and the heat pro- 

_F""**-^^ ""^'"K ll^ ^ ^^^'^duced in the core shock front is con- 
verted into high-energy neutrinos. The 

CORE SHOCK WAVE mean free path of the neutrinos is less 
than 100 meters under these extreme 

1-\ \ 0.98 MO CORE conditions. Hence, instead of escaping 
freely from the star, the neutrinos dif- 
fuse outward, depositing the energy re- 
leased by the core's collapse in the en- 

NEUTRINO DEPOSITION ON NEUTRINO DEPOSITION OFF velope of the star and thereby raising 
the envelope to temperatures as high 

| i -i--- !---~ -- ------I-- - - - - - 1-----as 200 billion degrees. At these enor- 
1.84 1.85 1.86 1,87 1.88 1,89 1,90 mous temperatures explosive nuclear 

burning is initiated in the envelope, 
TIM E (sec) with a consequent release of additional 

rhe dynamics of the collapse and reexplosion of a star of 2 solar m.asses. thermal energy. Because of the huge 
id curve represents the radius as a function of time for a spherical shell of thermal energies generated by neutrino 
iside which a certain fraction of the star's mass lies. Each curve is labeled deposition and by nuclear burning, the 
'mass-fraction." [Based on calculations by Colgate and White (4)1 envelope of the star suddenly becomes 

gravitationally unbound. An exploding. 
shock wave forms and blows the en- 

y rapidly with additional com- Colgate and White (4) have used velope away from the core with speeds 
Since the Compton wave- computers at Lawrence Radiation Lab- approaching the speed of light; and the 

f an electron is 100,000 times oratory to study the details of this huge thermal energies of the expand- 
an Fe56 nucleus, electrons will catastrophic collapse (5). The details ing envelope are converted to radia- 

ing squeezed by the contracting of the collapse of the 2-solar-mass tion so intense that the luminosity of 

ch sooner than will iron nu- star, as worked out by Colgate and the exploding star approaches that of 
the contraction proceeds, our White, are shown in Fig. 1 and are a galaxy. In addition, nuclear par- 

niass star pushes the zero-point described below. ticles are accelerated in the exploding 
of its electrons higher and shock wave in such numbers and to 

while the zero-point energies such high velocities as to account for 
n nuclei remain negligible. Supernova Explosions a significant fraction of the galactic 

ually a point is reached at cosmic rays observed at the earth. 
he sum of the rest mass of an Catastrophic collapse is initiated by Stars of more than about 5 solar 

cleus plus the rest mass of an electron capture when the center of masses undergo supernova explosions 

plus the electron's rising zero- the slowly contracting star reaches a similar to that described above. How- 

lergy exceeds the rest mass of density of about 1011 grams per cubic ever, the collapse of a massive star's 
nucleus. No longer is a free centimeter. Within a fraction of a sec- core is initiated not by electron cap- 

lucleus unstable against beta ond after initiation of collapse, nearly ture, but by the sudden breakup of 

ito electron plus Fe56; rather, all the electrons and Fe56 nuclei in- its Fe56 nuclei into He4 nuclei. This 
s and Fe5" nuclei are unstable side the star's core have been trans- breakup occurs when the temperature 

combining to form Mn56 and formed into highly neutron-rich nuclei in the contracting core -has become so 

iutron-rich nuclei (electron cap- and free neutrons, and the core is in high that there are photons present 
nd such combination begins to free fall. At 1.86 seconds after initia- with sufficient energy to disintegrate 

At this point in the evolution ti.on the core has acquired a kinetic the Fe56 nuclei. The photodisintegra- 
star the high-zero-point-energy energy of collapse equivalent to a siz- tion of Fe"' reduces the temperature 
s are providing essentially all able fraction of its rest mass, and the and hence also the pressure in the 
ssure that sustains the weight neutrons in the core have been corn- core of the massive star, and there- 

star. When electrons begin to pressed into regions of the order of by initiates collapse. Once collapse has 
ir by combining with Fe5" nu- their Compton wavelength (density been initiated, the evolution of a mas- 

sustaining pressure begins to --10T g/cm3). At this point the sive supernova is the same as that of 

ir; and the star, which can no zero-point kinetic energy of the neu- supernovae of less than 5 solar masses 

upport itself, begins to collapse trons-and with it their zero-point with one possible exception: Theoreti- 

nhicallv oressure-begins to rise rapidly. The cal analyses by W. A. Fowler and 
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F. Hoyle (with which Colgate and White 
disagree) (6) indicate this, that in a 
massive star the explosion may be 
caused, not by the gravitational po- 
tential energy released in the core's 
collapse, but by nuclear energy re- 
leased in the detonation of 01; dur- 
ing the collapse of the star's mantle. 

Detailed observations of supernovae 
(3) are in all respects compatible with 
the above theoretical description of 
them but do not yet rule out other 
explanations. A more rigorous test of 
this description will come from a study 
of the neutrinos emitted by superno- 
vae-if and when it is technologically 
possible to detect such neutrinos. 

So much for the details of the evolu- 
tion of a star into its final dead state. 
Let us now turn to the nature of the 
final state-to the fate of the core 
left behind in a supernova explosion 
and to the final forms of stars which, 
because their masses are less than the 
Chandrasekhar limit, never become 
supernovae. 
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Fig. 2. The Harrison-Wheeler equation of state for matter at the end point of thermo- 
nuclear evolution. 

Harrison-Wheeler Equation 

In order to study the final states of 
stars, we need an equation of state for 
the kind of matter from which dead 
stars are made: matter at the end 
point of thermonuclear evolution. The 
equation of state for such matter was 
calculated in 1958 by B. K. Harrison 
and J. A. Wheeler (7, 8) from a knowl- 
edge of the physics of the nucleus. 
Their calculations were carried to an 
accuracy as great as present under- 
standing of high-density nuclear phys- 
ics allows. The resultant "Harrison- 
Wheeler equation of state" is plotted 
in Fig. 2. 

At low densities (below point b of 
Fig. 2) matter at the end point of ther- 
monuclear evolution is in the form of 
Fe56~, and its pressure is provided by 
solid-state forces. As the iron is com- 
pressed to higher densities (region b 
to c), solid-state forces begin to con- 
tribute less to the pressure than do 
orbital electrons of the iron nuclei, 
which resist being compressed. At point 
c solid-state forces are negligible, and 
the orbital electrons, which provide all 
the pressure, constitute a "degenerate 
Fermi gas," except that they tend to 
cluster about the iron nuclei. Feyn- 
man, Metropolis, and Teller (9) have 
used the Fermi-Thomas statistical 
model of the atom to correct for this 
clustering effect, thereby obtaining the 
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pressure-density relation shown by the 
curve between c and d in Fig. 2. Be- 
tween points d and e the clustering of 
electrons about Fe;"5 nuclei is negli- 
gible, and the electrons form a rel- 

ativistically degenerate Fermi gas. As 
the Fermi electron gas and Fe'" nuclei 
are compressed still further (region e 
to f), the Fermi energy of the elec- 
trons plus the mass of an Fe-"; nu- 
cleus becomes greater than the mass 
of a Mn"( nucleus. Consequently, elec- 
trons are squeezed onto the Fe'(" nu- 
clei to form M n'" and other neutron- 
rich nuclei (electron capture). As com- 

pression becomes greater and greater, 
the configuration of lowest energy is 

pushed further and further away from 
Fe;" toward nuclei which are more 
and more neutron-rich. Eventually neu- 
trons become so numerous that they 
begin to drip off the nuclei (point /), 
and the material is gradually converted 
from a mass of neutron-rich nuclei 
to a dense Fermi gas which is 8/10 
neutrons, 1/10 protons, and 1/10 
electrons (point g and above). At 
still higher densities the matter at the 
end point of thermonuclear evolution 
consists of a mixture of neutrons, 
protons, electrons, lambda hyperons, 
and other massive particles which, 
although highly unstable in the labora- 
tory, are completely stable at extreme 
densities. 

The equation of state is quite well 
known up to the point at which heavy 

hyperons become stable (--1015- g/ 
cm"), but totally unknown beyond 
there. Fortunately, the form of the 

equation of state in the region of den- 
sity ; 101' grams per cubic centi- 
meter is not crucial to my discussion. 
We can assume for simplicity that in 
the limit of extreme densities 

pressure = (1/3) X density X c2, 

where c is the speed of light. Large 
but physically reasonable departures 
from this limiting form of the equa- 
tion of state have only small effects on 
the final states of cold, dead stars. 

Uniform Density Approximation 

The final, dead state of any star 
will be a spherical configuration of 
matter at or near the end point of ther- 
monuclear evolution. How will this 
matter be distributed inside the star? 
What will be the star's central den- 
sity? its radius? its mass? In answering 
these questions it is useful to introduce 
the concept of the total number, A, of 
baryons contained in a star. 

Baryons are heavy nuclear particles 
-neutrons, protons, lambda hyperons, 
and so on. Although baryons can be 
changed from one form to another 
(for example, electron + proton - 
neutron + neutrino), the total num- 
ber of baryons is conserved in any 
elementary particle transformation. 
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Fig. 3. Spherical configurations of uniform density for the Harrison-Wheeler equation 
of state: Negative of the binding energy plotted against density. Aside from an additive 
constant, the quantity plotted on the vertical scale is the total mass-energy of the 
configuration as measured in units of the mass-energy of the sun. Each curve repre- 
sents a sequence of uniform density configurations containing a fixed number of 
baryons, A. (Ao is the number of baryons in the sun.) The cross-hatched regions 
are barriers which separate the configuration of stable equilibrium of highest density 
from gravitational collapse to zero volume. 

For this reason, the total number of 
baryons inside a star is a measure of 
the amount of matter which the star 
contains. By contrast, the mass of a 
star is not a good measure of its mat- 
ter content because the mass depends 
upon the state of binding of the 
baryons. 

An important result valid both in 
the Newtonian theory of gravitation 
and in Einstein's theory is that (8, 10) 
in any cold, static star containing 
a certain number of baryons, the bar- 
yons are distributed in such a way 
as to minimize or maximize the star's 
total mass-energy [rest mass-energy 
plus thermal energy-if any-plus in- 
ternal energy of compression plus 
(negative) gravitational potential ener- 
gy]. Hence one way to determine all 
possible final states for a star con- 
taining A baryons is to compare all 
conceivable distributions of A baryons 
at the end point of thermonuclear evolu- 
tion and to pick out those which mini- 
mize or maximize the total mass-ener- 
gy. This would be a difficult task in 
general, since there are innumerable 
ways in which the baryons can be 
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distributed throughout a star. Fortu- 
nately, however, much can be learned 
from a comparison of configurations of 
uniform density. 

A comparison of uniform density 
configurations for matter obeying the 
Harrison-Wheeler equation of state is 
made in Fig. 3. On the vertical scale 
of Fig. 3 is plotted the negative of the 
binding energy of each configuration 
-that is, the difference between the 
total mass-energy of the configuration 
and the mass-energy it would have if 
its matter were dispersed to infinite 
dilution-and on the horizontal scale 
is plotted the density of the configura- 
tion. Each curve represents the uni- 
form density configurations for a star 
containing a particular number of bar- 
yons and can be thought of as a "po- 
tential energy curve" for that star. 

The qualitative behaviors of the 
mass-energy curves of Fig. 3 are easily 
understood in terms of an interplay 
between negative gravitational poten- 
tial energy and positive internal ener- 

gy of compression. Regardless of the 
number of baryons in a star, as the 
star is compressed from infinite dilu- 

tion, its (negative) gravitational energy 
initially rises more rapidly than its in- 
ternal energy of compression. Hence, 
total mass-energy initially decreases. 
For stars with A/Ao > 1.2 (for ex- 
ample 1.7 in Fig. 3), general relativis- 
tic, nonlinear growth of gravitational 
energy begins so soon that compres- 
sional energy can never take over. 
Hence, for such stars, increasing com- 
paction reduces the total mass-energy 
monotonically to zero. However, if 
A/Ao < 1.2, rapidly rising pressure 
causes compressional energy to become 
more important than gravitational en- 
ergy before general relativity comes 
into play. Hence, for such stars total 
mass-energy reaches a minimum and 
then rises with increasing compres- 
sion, until the nonlinear gravitational 
effects of Einstein's general relativity 
take over and cause a drop of the 
total mass-energy to zero. At least this 
is part of the story. Additional compli- 
cations arise as a result of a "quirk" 
in the equation of state for cold mat- 
ter at the end point of thermonuclear 
evolution. When a density of -101 2 

grams per cubic centimeter is reached, 
neutron drip begins to occur in such 
matter, causing the star's pressure and 
its energy of compression to rise much 
less slowly with increasing compaction 
than at lower densities. (See depres- 
sion in the curve for the equation of 
state in Fig. 2.) For a star with 
A/Ao > 0.4 (for example 0.6 of Fig. 
3), negative gravitational energy is ris- 
ing rapidly enough at this point to 
dominate the diminished compressional 
energy and cause total mass-energy to 
fall temporarily. However, for A/Ao < 
0.4 (for example, 0.04 of Fig. 3) even 
the diminished compressional energy at 
-1012 grams per cubic centimeter 
dominates gravitational energy, and no 

temporary drop occurs in the total 

mass-energy. 
At each minimum in its mass-energy 

curve, a star has-in the uniform den- 

sity approximation-a configuration of 
stable equilibrium, and at each maxi- 
mum it has a configuration of unstable 
equlibrium. Hence, for a star contain- 

ing 0.04 as many baryons as are in 
the sun there are two equilibrium con- 

figurations: a stable one at the mini- 
mum in the mass-energy curve, cor- 

responding to a cold white dwarf star; 
and an unstable one at the maximum. 
If a star at the maximum is distended 

slightly, it will explode; if it is com- 

pressed slightly, it will collapse. To 
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what will it collapse? According to gen- 
eral relativity theory, it will collapse 
to a singularity-that is, into zero 
volume and to infinite density. 

Consider next a star containing 0.6 
as many baryons as our sun contains. 
It has two stable equilibrium configura- 
tions (minima of Fig. 3): a cold white 
dwarf configuration made of a degener- 
ate electron gas and Fe56 nuclei, and 
a neutron star configuration made of 
a degenerate neutron gas. There are 
two unstable equilibrium configurations 
(maxima of Fig. 3); and at the second 
one, if the star is compressed slightly, 
it will collapse to zero volume. 

Finally consider a cold star at the 
end point of thermonuclear evolution, 
which contains more than 1.2 times 
the number of baryons in the sun- 
for example, A/Ao 1= .7 in Fig. 3. 
Such a star has no equilibrium con- 
figurations. There is no way for it to 
escape gravitational collapse to zero 
volume. 

From Fig. 3, then, we conclude that, 
if the collapsed core left behind in a 
supernova explosion is sufficiently mas- 
sive (; 1.2 solar masses), it will not 
settle down into a cold, dead state. 
Rather, after it has cooled to near- 
zero temperature, the core will col- 
lapse catastrophically once again, this 
time to zero volume. We also con- 
clude that a less massive supernova 
core or a cold star with mass less 
than the Chandrasekhar limit can be 
induced to collapse to zero volume if 
it is compressed sufficiently. These con- 
clusions are so startling that we would 
like to see them spelled out not only 
in the approximation of uniform den- 
sity, but also in the exact theory where 
the variation of density throughout the 
star is taken into account. 

Harrison-Wakano-Wheeler 

Configurations 

In the exact theory, the variation of 
density from the center to the surface 
of an equilibrium star is such as to 
make its total mass-energy a maximum 
or a minimum. By analytically perform- 
ing this extremization, we obtain the 
general relativity equation of hydrosta- 
tic equilibrium 

dp G (p + p/c2) (m + 4 7rr3 p/c2). 
dr r(r -2 Gm/c2) 

(1) 
Here G is Newton's gravitation con- 
stant, c is the speed of light, r is 
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Fig. 4. Harrison-Wakano-Wheeler configurations of hydrostatic equilibrium for cold 
matter at the end point of thermonuclear evolution. [Based on an extension by B. K. 
Harrison (8) of M. Wakano's original calculations (7)] 

radius inside the star, p is the mass 
density, p is the pressure at radius r, 
and m is the mass-energy inside ra- 
dius r: 

m- 4 rrrrp dr. (2) 

The nonrelativistic (Newtonian) form 
of the equation of hydrostatic equili- 
brium, Eq. 1, is obtained by taking 
the speed of light, c, to be infinite: 

dp/dr ---Gpm/r'. (3) 

At very high densities and pressures 
(p - p/c2 .1013 g/cm3) the general 
relativity terms in Eq. 1 cause a mul- 
tiplicative regeneration of pressure: The 
gravitational force acting on an ele- 
ment of fluid becomes quadratic in 
its pressure. It is this regeneration of 
pressure which enables gravitational 
forces to overwhelm the internal pres- 
sure of a star in the relativistic re- 
gime, regardless of how high its pres- 
sure may be for a given density, and 
forces excessively dense stars to gravi- 
tationally collapse to zero volume. 

By integrating Eq. 1 coupled with 
Eq. 2 for the mass inside radius r 
and with the Harrison-Wheeler equa- 
tion of state (Fig. 2), Wakano (7, 8) 
has calculated all possible equilibrium 
configurations for cold matter at the 
end point of thermonuclear evolution. 
Figure 4 shows the masses and radii of 

these Harrison-Wakano-Wheeler con- 
figurations as functions of their central 
density. Corresponding to each value 
of the central density there is one and 
only one HWW equilibrium configura- 
tion; and different equilibrium configu- 
rations have different masses, radii, and 
total numbers of baryons, as well as 
different central densities. 

The form of Fig. 4 can be com- 
pletely understood on physical grounds 
(8), but here I shall only remark that 
the first oscillation in the mass curve 
of Fig. 4 is due to electron capture and 
neutron drip in the matter of which the 
stars are composed (see Fig. 2 and 
associated discussion), while subsequent 
oscillations are due to general relativity 
(gravitation) effects. 

By comparing Fig. 3 (uniform den- 
sity approximation) with Fig. 4 (exact 
theory of HWW configurations), we 
can conclude the following: A star con- 
taining 0.6 times as many baryons as 
our sun will settle down into one of 
two possible stable equilibrium configu- 
rations when it dies: a cold white 
dwarf configuration (first minimum in 
A/Ao = 0.6 curve of Fig. 3; con- 
figuration at central density 3 X 106 

g/cm3 in Fig. 4), or a neutron star 
configuration (second minimum in 
A/Ao = 0.6 curve of Fig. 3; con- 
figuration at central density 2 X 1015 
g/cm3 in Fig. 4). Alternatively, a star 
with A/Ao - 0.6 might attempt to 
assume one of two possible uns'table 
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Fig. 5. Harrison-Wakano-Wheeler configu- 
rations: A portion of the curve of mass 
plotted against central density (schematic 
only). At each cusp the branch of the 
curve corresponding to configurations of 
larger radius is labeled "R>," and that 
corresponding to configurations of smaller 
radius is labeled "R<." 

equilibrium configurations when it dies: 
one of central density 3 X 1012 grams 
per cubic centimeter (first maximum 
in A/Ao = 0.6 curve of Fig. 3) or 
one of central density 2 X 1016 grams 
per cubic centimeter (second maximum 
of Fig. 3). There are no equilibrium 
configurations at all for a dead star 

containing more than - 1.2 times the 

number of baryons in the sun; such a 
dead star must inevitably collapse to a 

singularity. 

Stability of HWW Configurations 

The above comparison of Figs. 3 
and 4 enables us to conclude that cer- 
tain of the HWW equilibrium con- 
figurations are stable against gravita- 
tional collapse or explosion, whereas 
others are unstable. However, this 
method for studying stability has the 

disadvantage of being nonrigorous (re- 
call that Fig. 3 is based upon the uni- 
form density approximation), and it is 

not applicable to all HWW configura- 
tions. To determine precisely which of 
the HWW configurations are stable and 
which are unstable it is better to use 

completely rigorous and beautifully 
simple criteria formulated by Wheeler 
(8), a description of which I present 
here: 

A star lying at a maximum or a 
minimum in the curve of mass plotted 
against central density must have a 
zero frequency mode of radial oscilla- 
tion, for such a star can move back 
and forth on the peak or valley of 
the mass curve without changing its 
mass. This mode of oscillation changes 
stability as we pass from configura- 
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tions on one side of the peak or valley 
to configurations on the other. 

To determine whether the critical 
mode of radial oscillation becomes 
stable or becomes unstable at a particu- 
lar peak or valley, we consider in Fig. 
5 a portion of the curve of mass 
plotted against total number of baryons 
for the HWW equilibrium configura- 
tions. To each peak or valley in the 
mass curve of Fig. 4 there corresponds 
a cusp in Fig. 5. Near a given cusp, 
configurations on the higher branch of 
Fig. 5 will be less stable than those 
on the lower branch; in going from 
the lower to the higher branch the 
critical acoustical mode of oscillation 
goes from stability to instability. Now, 
the slope of the curve in Fig. 5 is 
the change in mass, dM, of an equilib- 
rium configuration when a single bar- 

yon, dA, is brought in from infinity 
and gently deposited on the surface 
of the star; that is the slope is 

dM/dA M n, X (1 + P) 
= n,, X (1 - GM/c2R) 

Newtonian theory 

=mb X (1 - 2GM/c2R ) 
General relativity theory (4) 

Here mi, is the mass of one baryon, 
P is the gravitational potential at the 
surface of the star, G is Newton's 
gravitation constant, c is the speed 
of light, and M and R are the total 
mass and radius of the equilibrium 
configuration. Near a critical point 
(cusp of Fig. 5, peak or valley of 
mass curve in Fig. 4), M changes very 
little with increasing density, but R 

changes rapidly. Consequently, at a 

cusp of Fig. 5 the branch of larger- 
radius configurations has the larger 
slope, dM/dA. If the cusp is a point 
of maximum mass, the configurations 
with larger radii and larger dM/dA 
lie on the lower branch of Fig. 5 and 
are thus more stable than the configu- 
rations with smaller radii. If the cusp 
is a point of minimum mass, the con- 

figurations with larger radii lie on the 

upper branch and are thus less stable 
than the configurations with smaller 
radii. 

These conclusions are summarized in 
Table 1. Using this table, we can de- 
termine from Fig. 4 the precise num- 
ber of unstable modes of radial oscil- 
lation for each HWW configuration: 
A sphere of iron the size of a golf 
ball is stable against collapse or ex- 

plosion. Since the lowest mode of 
radial oscillation cannot become un- 

Table 1. Wheeler's criteria for determining 
the change in stability of the critical mode of 
radial oscillation at a critical point as cen- 
tral density increases. 

Behavior of radius Direction of 
at critical point stability change 

Maximum mass 
Decreases Becomes unstable 
Increases Becomes stable 

Minimum mass 
Decreases Becomes stable 
Increases Becomes unstable 

stable until a peak in the mass curve 
of Fig. 4 is reached, all configurations 
with central density less than 3 X 108 

grams per cubic centimeter (white 
dwarf stars) are stable. At the first 
maximum of the mass curve the radius 
of the star is decreasing. Hence (see 
Table 1) the first radial mode becomes 
unstable there. We denote this instabili- 

ty by blackening the lowest oval in 

Fig. 4. At the first minimum the radius 
is once again decreasing, so the low- 
est mode becomes stable again, and 
we lighten the lowest oval of Fig. 4. 
Between the first minimum and second 
maximum lies the regime of stable neu- 
tron stars. At the second maximum the 
radius is again decreasing, so the first 
mode becomes unstable; at the second 
minimum the radius is increasing, so 
a second mode becomes unstable; and 
so on. 

It is possible to make this analysis 
of stability quantitative by means of a 
variational principle originally formu- 
lated by Chandrasekhar (11). Meltzer 
and I (12) have used Chandrasekhar's 
variational principle to determine the 
values of the frequencies of the low- 
est three modes of radial oscillation 
for the HWW configurations. The re- 
sults of our calculations, shown in Fig. 
6, are in perfect agreement with 
Wheeler's qualitative results. 

Thus far I have not discussed sta- 

bility and instability of HWW configu- 
rations against nonradial perturbations. 
It is generally assumed-though I do 
not know of any proof-that a cold 
star can be dynamically unstable against 
nonradial perturbations only if its low- 
est radial mode is also unstable. If 
this is true, then the analysis of purely 
radial oscillations is sufficient to reveal 
the absolute stability or instability of 
all HWW configurations. According to 
this analysis there are only two regions 
of stability: The white dwarf region 
(central density less than 3 X 108 
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g/cm3) and the neutron star region 
(central density between 3 X 1013 
g/cm3 and 6 X 1015 g/cm3). The 
white dwarf region includes stars con- 

taining less than -1.2 times the num- 
ber of baryons in the sun, while the 
neutron star region includes stars con- 
taining between -- 0.25 and - 0.7 
times the number of baryons in the 
sun (13). Any supernova core which 
contains more than - 1.2 times the 
number of baryons in the sun-and 
also less massive cores which become 
sufficiently compressed in the dynamics 
of supernova collapse-must gravita- 
tionally collapse to zero volume. There 
are no equilibrium configurations for 
such stars. 

Comparison with Observations 

After a white dwarf star is formed, 
it cools off slowly (cooling time, several 
billion years) by radiating away its 
thermal energy as light. Astronomical 
measurements of the masses and radii 
of radiating white dwarfs are in fairly 
good agreement with the predictions 
of Fig. 4 (14) and are in excellent 
agreement with other, more detailed 
stellar models which take into account 
rotation and varying chemical composi- 
tion. 

Neutron stars are not as easily ob- 
served as white dwarfs. During the 
first few thousand years after a neutron 
star is formed it is so hot that es- 
sentially all its radiation is in the x- 
ray region of the spectrum, which is 
blacked out by the earth's atmosphere 
(15). By the time the star has become 
cool enough to radiate primarily in the 
optical region, its luminosity is so low 
that the star could not be detected 
with the 200-inch telescope unless it 
were within a light-year of the earth. 
Hence, the only hope for detection of 
neutron stars is with rocket- and satel- 
lite-borne x-ray telescopes. Recent ob- 
servations (16) with rocket-borne x-ray 
telescopes have revealed x-ray sources, 
some of which may be neutron stars. 
However, the most promising of the 
sources-a source in the Crab nebula, 
which was formed by a supernova ex- 
plosion observed in A.D. 1054-is now 
known (17) not to be a neutron star. 

Finally, what are the prospects for 
observing a star as it gravitationally 
collapses to a singularity? Given even 
the most powerful technology conceiv- 
able in the next century, the prospects 
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for observing collapse toward a singu- 
larity are nil. 

I shall conclude with a brief descrip- 
tion of the dynamics of the gravita- 
tional collapse to zero volume, which 
-according to general relativity theory 
-will be the fate of sufficiently mas- 
sive supernova cores. In Fig. 7, I use 
a spacetime diagram to depict the dy- 
namics of the collapse. In this diagram 
time is plotted vertically and radial dis- 
tance is plotted horizontally; angular 
directions are suppressed from the di- 
agram since the collapse is assumed 
to be spherically symmetric. The time 
and distance scales chosen are such 
that radial light rays move along 45- 
degree lines; but because the gravita- 
tional field of the star "warps" the 
geometry of spacetime, freely moving 
particles do not move along straight 
lines in the diagram. The surface of 
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the collapsing star moves through 
spacetime along the indicated curve, 
while an observer moving around the 
collapsing star in an orbit of fixed 
radius moves along the indicated hyper- 
bola. The collapsing star generates a 
singularity (jagged hyperbola) in space- 
time which swallows the star up; and 
any other object which falls into this 
"Schwarzschild singularity" also gets 
destroyed there. 

Suppose that a man on the surface 
of the collapsing star sends out a series 
of signals (wavy 45-degree lines in Fig. 
7) to the orbiting observer, informing 
him of the progress of the collapse. As 
the star gets closer and closer to a 
certain critical radius, called its 
"Schwarzschild radius" (intersection of 
path of surface of star with dotted 
45-degree line in Fig. 7), the signals, 
which are sent at regularly spaced in- 
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Fig. 6. Frequencies of the lowest three modes of radial oscillation for the Harrison- 
Wakano-Wheeler configurations. In the stable region the amplitude of radial oscillation 
varies sinusoidally [amplitude = (function of radius) X cos wf]; while in the unstable 
region the amplitude grows exponentially [amplitude = (function of radius) X e"t]. 
In this figure the square of the angular frequency, w, is plotted against central density 
in regimes of stability, and the square of the growth constant, a, is plotted against 
central density in regions of instability. Note the correlation of points of changing 
stability (black dots) here with maxima and minima in the mass curve of Fig. 4; 
and note the agreement of the direction of change of stability with the results of 
Wheeler's analysis (text, Table 1, and blackened ovals of Fig. 4). 
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Fig. 7. Spacetime diagram illustrating the 
dynamics of gravitational collapse to zero 
volume. The time and radial coordinates 
are those of Kruskal (18), but for the 
purposes of qualitative exposition they can 
be thought of as the intuitive time and 
radial coordinates of Newtonian theory. 

tervals, are received by the observer at 
more and more widely spaced inter- 
vals. The observer does not receive a 

signal emitted just before the Schwarzs- 
child radius is reached, until after an 
infinite amount of time has elapsed ac- 

cording to his clocks; and he never re- 
ceives a signal emitted after the 
Schwarzschild radius is passed. That 

signal, like the man who sent it, gets 
caught and crushed out of existence 
in the singularity. 

HAence, to the orbiting observer, the 

collapsing star appears to slow down 
as it approaches its Schwarzschild ra- 

dius; light from the star becomes more 
and more red-shifted; and clocks on 
the star appear to run more and more 

slowly. It takes an infinite time for the 
star to reach the Schwarzschild radius, 
and as seen by the orbiting observer, 
the star never gets beyond there. 

But t to the man standing on the star 
as it collapses into oblivion there is 

nothing at all special about the 
Schwarzschild radius. He passes right 
thlrough it and on ilnto the singularity 
in a fraction of a second. What hap- 
pens to the man on the star as col- 

lapse nears completion? Tidal gravita- 
tional forces squeeze him from the 
sides and stretch hini between head and 
foot. As the singularity approaches, 
t-hese tidal forces become infinitely 
strong and the man's body is stretched 
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like a rubber band and simultaneously 
compressed from the sides to infinite 
density and zero volume. 

At least, this is the picture accord- 
ing to classical general relativity theory. 
But when a density of - 1 04! grams 
per cubic centimeter is reached, classi- 
cal general relativity breaks down. To 
follow the collapse beyond this point, 
one must quantize the gravitational 
field-that is, combine general relativi- 
ty theory with quantum mechanics- a 
formidable task which, as yet, is far 
from completion. 

Summary 

When a star has burned all its nu- 
clear fuel, it enters a phase of slow, 
quasi-static gravitational contraction. If 
the mass of the star is less than the 
Chandrasekhar limit (- 1.2 solar mass- 

es) this contraction is brought to a 
halt by the rising pressure of the 
star's electrons, which resist being com- 

pressed into a small volume; and the 
star becomes a cold, white dwarf of 
central density - 106 grams per cubic 
centiimeter and radius - 10,000 kilo- 
meters. If the star's mass exceeds the 
Chandrasekhar limit, quasi-static con- 
traction leads to a state of instability 
against gravitational collapse. Collapse 
of the star's core proceeds, with the 

subsequent release of the energy of col- 

lapse as neutrinos, which blow away 
the envelope of the star (supernova 
explosion). If the supernova core con- 
tains less than - 1.2 times the number 
of baryons in the sun and if the core 
does not become too compressed dur- 

ing supernova collapse, then the core 
will. settle into the form of a cold, 
white dwarf star (central density - 
10 g/cm3, radius - 10,000 kmn) or 
a neutron star (central density - 1014 

g/cm3, radius - 10 km). However, if 
the core contains more than - 1.2 
times the number of baryons in the 

sun, or if it becomes sufficiently com- 

pressed during supernova collapse, then 
it will not reach a state of cold, hydro- 
static equilibrium; rather, it will gravita- 
tionally collapse to zero volume. 

This is the story of the death of a 
star as predicted by a combination of 
nuclear theory, elementary particle 
theory, and general relativity theory. 
Not taken into account in this analysis 
are such complications as stellar rota- 

tion, deviation from spherical sym- 
metry, and effects of magnetic fields. 

These unaccounted-for factors un- 
doubtedly have considerable effect on 
the quantitative results reported here; 
but it is doubtful that, except in ex- 
treme cases, they can change the quali- 
tative picture. 
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The genetic material controlling all 
the essential functions of Escherichia 
coli is organized into a single chromo- 
some which consists, as far as is 
known, of a continuous double-strand- 
ed molecule of DNA, approximately 
1100 microns long (1-3). Both genet- 
ic and microscopic evidence indicate 
that this chromosome has a circular 
structure (3, 4). Most of the DNA 
constituting the chromosome is packed 
into a loosely defined nuclear region 
less than 0.1 cubic micron in volume. 
In a fast-growing culture the cells of 
E. coli are 2 to 3 microns long and 
0.8 micron in diameter. They contain 
two to four chromosomes, in various 
stages of replication. The cells grow 
by elongating, forming a constriction 
at the equator, and separating into two 
daughter cells each containing two 
chromosomes (1, 5). Each chromo- 
some replicates once during each gen- 
eration, and the products are segregat- 
ed so that, at division, each daughter 
cell receives the appropriate number 
of chromosomes. 

Cells of E. coli harboring the sex 
factor F or other similar elements, all 
of which are constituted entirely or 
primarily of DNA (6), can form a 
cellular connection with suitable recipi- 
ent cells. DNA, corresponding to the 
sex factor, is then efficiently trans- 
ferred from donor to recipient. In 
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strains in which the sex factor has be- 
come associated with the chromosome 
(Hfr cells), conjugation results in the 
progressive linear transfer of the entire 
chromosome, at a rate such that trans- 
fer is complete in about 90 minutes 
(7). A striking aspect of this process 
is that, for any one Hfr strain, the 
chromosome is transferred in precisely 
the same sequence from all mating 
cells. The origin of the sequence is 
defined by the position at which the 
F factor had been inserted into the 
circular bacterial chromosome (3). 

Various models have been proposed 
as to how the process of DNA trans- 
fer in conjugation may be related to 
the mechanisms which coordinate 
chromosome replication and cell 
growth. In this article we describe these 
models and discuss experiments which 
have a bearing on them. 

Conjugation in E. coli 

The most studied system of conjuga- 
tion is the one, just mentioned, con- 
trolled by the transmissible sex factor 
F. There are three main mating types: 
F-, F+, and Hfr. F- cells lack F 
entirely: they can act only as recipients 
in matings with donor cells, and they 
do so with much higher efficiency than 
either F+ or Hfr cells. F+ cells trans- 
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in matings with donor cells, and they 
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fer their sex factor with high frequency 
to F- cells, converting them to the 
F+ type (8). The F factor itself is 
the only genetic material normally 
transferred in such matings. F+ cells 
do occasionally, however, give rise to 
stable Hfr derivatives capable of trans- 
ferring the entire bacterial chromo- 
some (3). 

Genetic experiments, which have 
been reviewed extensively (3, 9), indi- 
cate that transfer of the bacterial chro- 
mosome by an Hfr is rarely complete. 
Instead, the majority of the F- cells 
receive only a segment of the Hfr 
chromosome. The frequency of trans. 
mission, for any chromosome determi- 
nant, decreases with the distance of 
the determinant from the origin of 
transfer. The sequence of transfer of 
genetic markers can be precisely de- 
termined by artificially interrupting the 
mating at various times and assaying 
for the inheritance, by the F- cells, 
of a series of Hfr determinants. Trans- 
ferred markers are expressed as a result 
of recombination between the Hfr chro- 
mosomal fragment and the F- chro- 
mosome. In interrupted matings, the 
capacity to act as an Hfr donor is 
invariably the last character transferred. 
Hfr cells occasionally revert to the 
F+ type or give rise to cells with 
variant sex factors (F' factors) capa- 
ble of transferring, in addition to F 
itself, a number of genetic. markers 
previously located on one or both sides 
of the origin of transfer on the circu- 
lar Hfr chromosome (10). 

The properties of Hfr cells may be 
accounted for by postulating that they 
arise by integrating the F factor into 
the continuity of the circular bacterial 
chromosome at any one of a number 
of possible points. This would be ac- 
complished by a pairing between the 
sex factor and the chromosome, fol- 
lowed by a reciprocal genetic exchange. 
The process could be reversed to pro- 
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the continuity of the circular bacterial 
chromosome at any one of a number 
of possible points. This would be ac- 
complished by a pairing between the 
sex factor and the chromosome, fol- 
lowed by a reciprocal genetic exchange. 
The process could be reversed to pro- 
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