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During an examination of the distri- 
bution of the cladoceran Daphnia in the 
lakes of southern New England, it was 
noted that large Daphnia, although 
present in most of the lakes, could 
not be found among the plankton of 
several lakes near the eastern half of 
the Connecticut coast. The characteris- 
tic limnetic calanoid copepods of this 
region, Epischura nordenskioldi and 
Diaptomus m1inutus, and the cyclopoid 
Mesocyclops edax were also absent. 
Small zooplankters were abundant, es- 
pecially ithe cladoceran Bosmina longir- 
ostris and the copepods Cyclops bicus- 
pidatus thomasi and the small Tropo- 
cyclops prasinus (1). 

All of these lakes lacking large 
zooplankters have sizable "landlocked" 
populations of the herring-like Alosa 
pseudoharengus (Wilson) = Pomol- 
obus pseudoharengus (Fig. 1), known 
by several common names including 
"alewife" and "grayback" (2). This is 
originally an anadromous marine fish, 
breeding populations of which have be- 
come established in various bodies of 
fresh water, including Lake Cayuga, 
New York, and the Great Lakes (3). 
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The marine populations live in the 
coastal waters of the western Atlantic, 
from the Gulf of St. Lawrence to North 
Carolina, and ascend rivers and streams 
to spawn in springtime. The young re- 
turn to the sea in summer and autumn 
(4). The seven Connecticut lakes (Fig. 
2) with self-perpetuating populations of 
alewives are within about 40 kilome- 
ters of the present coastline, and 
each is drained directly, by a small 
stream or river, or indirectly, through 
the estuaries of the larger Connecticut 
or Thames rivers, into Long Island 
Sound (Fig. 3). As such streams and 
rivers are normally ascended by marine 
alewives, it is assumed that the estab- 
lishment of these self-sustaining popu- 
lations in the lakes is natural. 

The "alewife lakes" are diverse in 
area and depth. Although we have not 
examined the food of the alewives in 
these Connecticut lakes (alewives are 
difficult to catch), studies in other lakes 
have revealed that planktonic copepods 
and Cladocera are the primary food. 
The indifference of alewives to non- 

floating food is not surprising in view 
of the adaptation of the parent stock 
to feeding on zooplankton in the open 
waters of the sea (5). 

The dominant crustaceans in the 

plankton of all the alewife lakes are 

The marine populations live in the 
coastal waters of the western Atlantic, 
from the Gulf of St. Lawrence to North 
Carolina, and ascend rivers and streams 
to spawn in springtime. The young re- 
turn to the sea in summer and autumn 
(4). The seven Connecticut lakes (Fig. 
2) with self-perpetuating populations of 
alewives are within about 40 kilome- 
ters of the present coastline, and 
each is drained directly, by a small 
stream or river, or indirectly, through 
the estuaries of the larger Connecticut 
or Thames rivers, into Long Island 
Sound (Fig. 3). As such streams and 
rivers are normally ascended by marine 
alewives, it is assumed that the estab- 
lishment of these self-sustaining popu- 
lations in the lakes is natural. 

The "alewife lakes" are diverse in 
area and depth. Although we have not 
examined the food of the alewives in 
these Connecticut lakes (alewives are 
difficult to catch), studies in other lakes 
have revealed that planktonic copepods 
and Cladocera are the primary food. 
The indifference of alewives to non- 

floating food is not surprising in view 
of the adaptation of the parent stock 
to feeding on zooplankton in the open 
waters of the sea (5). 

The dominant crustaceans in the 

plankton of all the alewife lakes are 

the same small-sized species, Bosmina 
longirostris (or Ceriodaphnia lacustris) 
being most numerous; Cyclops bicuspi- 
datus thomasi and Tropocyclops prasi- 
nus, present in varying ratios, are also 
numerous. By contrast, in the non- 
alewife lakes Diaptomus spp. and 
Daphnia spp. are always dominants, us- 
ually accompanied by the larger cyclo- 
poids Mesocyclops edax and Cyclops 
bicuspidatus thomasi. The absence of all 
but one of these last-named larger zoo- 
plankters from the lakes inhabited by 
the planktivorous alewife may be due 
to differential predation by the alewives. 
The elimination of these pelagic zoo- 
plankters allows the primarily littoral 
species, such as Bosmina longirostris, 
to spread into the pelagic zone, from 
which, we conclude, they would other- 
wise be excluded by their larger com- 
petitors. 

Changes in Crystal Lake Plankton 

An opportunity to test this hypoth- 
esis was provided by the introduction 
into a lake in northern Connecticut of 
Alosa aestivalis (Mitchell), "glut her- 
ring," a species closely related, and 

very similar, to Alosa pseudoharengus 
(6). The plankton of Crystal Lake had 
been quantitatively sampled by one of 
us in 1942 before Alosa was intro- 
duced. At that time the zooplankton 
was dominated by the large forms 
(Daphnia, Diaptomus, Mesocyclops) 
expected in a lake of its size (see 
Table 1). Resampling 10 years after 
Alosa had become abundant should re- 
veal plankton similar in composition to 
that common in the lakes with natural 

populations of Alosa pseudoharengus 
and unlike that characteristic of Crystal 
Lake before Alosa became abundant. 

The plankton of the entire water 
column of Crystal Lake was sam- 

pled quantitatively on 30 June 1964 
(7). All the crustacean zooplankters 
caught in the 1942 and 1964 collections 
(a total of 6623 specimens) were 
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identified, and those belonging to each 
species were enumerated. As the nauplii 
of all species were lumped and merely 
enumerated as "nauplii," the figures for 
copepods given in Table 1 indicate only 
the percentages of adults and copepo- 
dids. The copepodid stages of some 
coexisting cyclopoids were so similar 
that differentiation of species was some- 
times uncertain. For these species a 
lumped itotal is given in ,the table. The 
plankton of four lakes with natural 
populations of Alosa was sampled for 
comparison with that of Crystal Lake 
in 1964, and the plankton of four 
lakes, without Alosa, in the "alewife" 
region of southern Connecticut was 
sampled for comparison with the Crys- 
tal Lake plankton of 1942. All 
these lakes were sampled between 
5 June and 7 July 1964 (8). The rela- 
tive frequencies of those crustacean 
zooplankters which comprise 5 percent 
or more of the total are given in Table 
1. The relatively large predaceous ro- 
tifer Asplanchna priodonta, the only 
noncrustacean recorded in Table 1, was 
remarkably numerous in some of the 
alewife lakes. The plankton of Crystal 
Lake in 1964, when Alosa aestivalis 
was abundant, was quite like that of the 
natural alewife lakes, and not at all like 
the plankton of Crystal Lake before 
Alosa was a significant element in the 
open-water community. Crystal Lake 
in 1942 resembled the lakes without 
alewives in that its plankton was domi- 
nated by Diaptomus and Daphnia. It 
might be added that resampling (9) of 
a majority iof the other Connecticut 
lakes after the same 20-year interval 
has not revealed such a major change 
in the composition of the zooplankton 
anywhere else. 

In order to examine more carefully 
the differences in body size between 
the dominants of alewife and those of 
non-alewife lakes, the size range of 
each species was determined. Body size 
was measured as body length, exclusive 
of terminal spines or setae. (The pos- 
terior limit of measurement for each 
genus is shown on the drawings of Fig. 
4.) A summation of the numbers of 
each dominant that fell within each size 
interval yields a size-frequency dia- 
gram for the crustacean zooplankters. 
Although such diagrams were prepared 
for each lake, only those for Crystal 
Lake in 1942 and 1964 are presented 
here (Fig. 4). As size intervals repre- 
sented by less than 1 percent of the 
population sample were left blank, the 
histogram does not indicate the pres- 
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ence of large but relatively rare forms. 
In Crystal Lake in 1942, specimens of 
the genera depicted occurred up to a 
length of 1.8 millimeters, and the pre- 
daceous Leptodora kindtii was repre- 
sented by a few specimens between 5 
and 10 millimeters. In 1964, by con- 
trast, no zooplankters over 1 millimeter 
long could be found, although in other 
Alosa lakes there were occasional speci- 
mens up to 1.25 millimeters. The 
naupli,i and metanauplii were counted 
but not measured, so that ithe totals 
of measured specimens are decreased 
by these amounts (see Table 1). The 
histograms (Fig. 4) show that the 
majority of the zooplankton are less 
than about 0.6 millimeter in length 
when A losa is abundant, whereas the 
majority of specimens of the dominant 
species in the same lake before Alosa 
became abundant were over 0.5 milli- 
meter long. The modal size in the 
presence of Alosa was 0.285 milli- 
meter, whereas the modal size in the 
absence of Alosa was 0.785 milli- 
meter. This seems clear evidence that 
predation by Alosa falls more heavily 
upon the larger plankters, eliminating 
those plankters more than about 1 mil- 
limeter in length. 

Effects of Predation by Alosa 

Whether or not a species will be 
eliminated (or reduced to extreme 
rarity) by Alosa predation will in good 
part depend upon the average size of 
the smallest instar of egg-producing 
females; a sufficient number of females 
must survive long enough to produce 
another generation. To assess the signi- 
ficance of this critical size, specimens 
approximating the average size of the 
smallest mature instar of the dominant 
species of both years were drawn to 
scale and appropriately placed on the 
size-frequency histograms. The smallest 
mature females of Daphnia catawba, 
Mesocyclops edax, Epischura norden- 
skioldi, and certainly Leptodora kindtii 
are too large to have a reasonable 
chance of surviving long enough to pro- 
duce sufficient young. However, the 
elimination of Diaptomus minutus (de- 
picted in Fig. 4) but not of Cyclops 
bicuspidatus thomasi, indicates that, for 
species maturing at a length between 
0.6 and 1.0 millimeter, factors other 
than size (such as escape movements, 
spatial distribution) are also of signifi- 
cance. Aside from Cyclops bicuspidatus 
thomasi, all the characteristic zooplank- 

Table 1. The relative frequency of planktonic Crustacea in lakes with and without Alosa. 
C, Cedar Pond; BA, Bashan Lake; BE, Beach Pond; G, Lake Gaillard; L, Linsley Pond; 
A, Amos Lake; Q, Lake Quonnipaug; R, Rogers Lake. Relative frequencies expressed in 
percentages. 

Lakes without alewives Crystal Lake Natural alewife lakes 

Organism 1942 
C BA BE G (No 

194 L A Q R 
Alosa) (Alosa) 

Cladocera 
Leptodora kindtii 
Holopedium spp. 6 * 5 
Diaphanosonma spp. * 5 : 
Daphnia galeata 59 
Daphnia catawba 7 11 14 
Ceriodaphnia lacustris : 43 * 
Bosmina coregoni : 13 
Bosmina tubicens * 5 
Bosmina longirostris 34 39 44 16 10 

Copepoda 
Epischura nordenskioldi * * * * 
Diaptomus minutus 84 76 52 
Diaptomus pygrnaeus * 50 * * 6 * 5 

Mesocyclops edax 21 112 
Cyclops bicuspidatus f 9 34 35 
Tropocyclops prasinus f29 * 11 9 20 
Orthocyclops modestus 16 
Nauplii 11 13 10 12 11 28 7 30 8 18 

Rotifera 
Asplanchna priodonta 17 6 * 

Dimensions 
Area (hectares) 9 112 158 440 80 9 42 45 107 
Maximum depth (m) 5 14 19 20 14 14 14 14 20 
Mean depth (m) 3 5 6 7 7 6 4 6 

* Present, but comprising less than 4.5 percent. 
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ters of Alosa lakes mature at lengths 
of less than 0.6 millimeter. 

Since Alosa, except during spawning, 
avoids the shores, its predation falls 
more heavily upon, and may eliminate, 
"lake species" of zooplankton that tend 
to avoid the shore, allowing littoral or 
"pond species" to thrive. Among the 
Cladocera, for example, a large Daphnia 
(D. catawba, D. galeata) usually oc- 
curs as a dominant in the zooplankton 
of lakes over 5 meters deep, while 
Bosmnina longirostris is a common dom- 
inant in shallower bodies of water. 
When Alosa is present, any population 
of large Daphnia is eliminated or 
severely reduced, and Bosmina longi- 
rostris, relatively spared by its small- 
er size and the more littoral habits 
of a large part of its population, re- 
places Daphnia as the open-water 
dominant. The differential predation 
due to the tendency of Alosa to 
feed in open water away from the 
bottom (5) can also be seen among 
the medium-sized copepods. Of the 
species usually dominant in lake plank- 
ton, Diaptomus minutus, the smallest, 
is eliminated by Alosa in small lakes, 
and in those lakes the larger Cyclops 
bicuspidatus thomasi (see Fig. 4) 
achieves a dominance that it seldom 
enjoys otherwise. This differential pre- 

dation is probably due to the fact that 
adult Diaptomus minutus are primarily 
epilimnetic in summer, while the adult 
Cylops bicuspidatus thomasi tend to be 
heavily concentrated in the inshore and 
bottom waters, only the immature 
being found in the open water. 
Diaptolmus pygmaeus, intermediate be- 
tween the above two species both in 
size at the onset of maturity and in 
spatial distribution of adults, often sur- 
vives in Alosa lakes as a minor com- 
ponent of the plankton. 

The alewife lakes of Connecticut are 
small. It is, therefore, of interest to 
examine the plankton of larger lakes 
into which Alosa has been introduced. 
Alosa has long been abundant in Lake 
Cayuga, the largest of the Finger Lakes 
of New York, with an area of 172 
square kilometers and a maximum 
depth of 132 meters. The plankton of 
Cayuga is dominated by Bosmina longi- 
rostris (or Ceriodaphnia sp.). Large 
Cladocera, such as Daphnia, Leptodora, 
and Polyphemus, are never common, 
and Diaptomus is scarce. The calanoid 
Senecella calanoides (2.7 mm) is pres- 
ent only at depths below 80 meters. 
This numerical ascendancy of the 
smaller zooplankters in the upper waters 
is consistent with the concept of size- 
dependent predation by Alosa. The per- 

Fig. 1. Alosa (= Pomolobus) pseudoharengus (Wilson). Top, mature specimen, 300 
mm long. Note that mouth opens obliquely. Bottom left, first branchial arch, with 
closely spaced gill rakers that act as a plankton sieve. Compare with (bottom right) 
the widely spaced gill rakers of A. mediocris, a species that feeds primarily upon 
small fish. [After Hildebrand (4), with the permission of the Sears Foundation for 
Marine Research, Yale University] 
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sistence of large zooplankters in the 
Laurentian Great Lakes indicates that 
Alosa has had a less dramatic effect on 
the plankton of these immense lakes 
(10). 

Size and Food Selectivity 

To assess the significance of Alosa 
predation it is necessary to consider 
the importance of the size of food 
organisms throughout the open-water 
community. To simplify the discussion 
we shall consider the open-water com- 
munity of a lake to comprise four 
trophic levels. Level four, the piscivores, 
consists chiefly of fish, even though 
their fry are planktivorous and thus 
belong to the third trophic level, plank- 
tivores. On the third level, also, fish 
are quantitatively most important (11). 
Level two consists of the herbivorous 
zooplankters. (Some zooplankters are 
predators and therefore on level three, 
but are quantitatively usually negligi- 
ble.) The planktonic herbivores feed 
upon the microphytes-the larger algae 
(net phytoplankton) and the small algae 
(nannoplankton)-that comprise level 
one in the open waters, together with 
bacteria and a variety of nonliving or- 
ganic particles. The nannoplankton, to- 
gether with all the other particles that 
can pass through a 50-micron sieve, will 
be called nannoseston. 

Animals choose their food on the 
basis 'of its size, abundance, and edi- 
bility, and Ithe ease with which it is 
caught. However, there is a funda- 
mental difference between food selection 
by herbivorous zooplankton and that 
by the predators of higher levels. For 
planktivores and piscivores, other things 
being equal, the least outlay of energy 
in relation to the reward is required if 
a smaller number of large prey, rather 
than a larger number of small ones, 
are taken (12). When the environment 
provides a choice, therefore, natural 
selection will tend to favor the pred- 
ator that most consistently chooses the 
largest food morsel available. At the 
highest trophic levels, where the num- 
ber of available prey is often low, a 
predator must often take either a small 
morsel or none at all. The variety (13) 
and abundance of ithe zooplankton, 
however, usually provide the plankti- 
vore with an array of sizes from which 
to choose. One would expect, therefore, 
that planktivores would prey upon 
larger organisms more consistently than 
do the piscivores. It should further be 
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noted that visual discrimination is indis- 

pensable in the feeding of piscine plank- 
tivores, even of those such as the ale- 

wife, whose gill-rakers serve as plankton 
strainers (Fig. 1) (14). 

In the selection of food by herbiv- 
orous zooplankters, on the other hand, 
visual discrimination plays a negligible 
role; indeed, the absolute dimensions of 
both herbivore and food particle may 
well determine ,the restricted role of 
vision (15). The lower limit of food- 

particle size for planktonic herbivores 
is determined by the mechanism that 
removes these particles from a water 
current flowing over a part of the body 
near the mouth. Studies of feeding in 
rotifers, cladocerans, and calanoid cope- 
pods have demonstrated that all can se- 
cure particles in the 1- to 15-micron 

range. This represents the entire range 
that can be taken by most herbivorous 
rotifers, while the upper size limit of 

particles .that can also be taken by large 
cladocerans and calanoids probably ac- 
cords roughly with !the body size of the 

zooplankter, and commonly includes 

particles up to 50 microns (16). Among 
food particles of usable size, both roti- 
fers and calanoids can exercise selection 

by rejecting individual particles, ap- 
parently on the basis of chemical or 
surface qualities, but the chief control 
that cladocerans exert is by varying the 
rate of the feeding movements (17). 

Size-Efficiency Hypothesis 

To differentiate between these two 

types of feeding, the planktivores and 
piscivores can be called "food selec- 
tors," because they continuously make 
choices, in large part on the basis of 
size. The herbivorous zooplankters, on 
the other hand, can be called "food 
collectors," because the size range of 
their food is more or less automatically 
determined. The ecological implications 
of size-dependent predation upon the 
array of planktonic food collectors are 
outlined in what we shall call the "size- 

efficiency hypothesis": 
1) Planktonic herbivores all com- 

pete for the fine particulate matter 
(1 to 15 a) of the open waters; 

2) Larger zooplankters do so more 
efficiently and can also take larger par- 
ticles; 

3) Therefore, when predation is of 
low intensity the small planktonic her- 
bivores will be competitively eliminated 
by large forms (dominance of large Cla- 
docera and calanoid copepods). 
1 OCTOBER 1965 

4) But when predation is intense, 
size-dependent predation will eliminate 
the large forms, allowing the small zoo- 

plankters (rotifers, small Cladocera), 
that escape predation to become the 
dominants. 

5) When predation is of moderate 
intensity, it will, by falling more heavily 
upon the larger species, keep the popu- 
lations of these more effective herbi- 
vores sufficiently low so that slightly 
smaller competitors are not eliminated. 

The data supporting this hypothesis 
are summarized below. 

The view that the small particles 
present in open waters are the most 
important food element for all plank- 
tonic herbivores is supported by the 
following: Rotifers and large Cladocera 
(Daphnia) and calanoids (for example, 
Eudiaptomus) are all able to collect 
particles of the 1- to 15-micron range, 
as noted above. Particles in this range 
are heterogeneous (algae, bacteria, or- 

ganic detritus, organic aggregates) and 
therefore constitute a relatively con- 
stant and demonstrably adequate source 
of food. Also, they are more digestible 
than many of the net phytoplankton 
(such as diatoms) which have a cover- 
ing that impedes digestion and assimila- 
tion (18). 

The competitive success of the larger 
planktonic herbivores is probably due 
to (i) greater effectiveness of food- 
collection; and (ii) relatively reduced 
metabolic demands per unit mass, per- 
mitting more assimilation to go into egg 
production. 

The greater effectiveness of the larger 
zooplankters in collecting the nannoses- 
ton appears to be1 largely responsible 
for the replacement of small by larger 
species in nature, whenever circum- 
stances permit (19). The probable 
basis for this greater effectiveness is 
the fact that in related species (with 
essentially identical food-collecting ap- 

Fig. 2. The coastal strip of eastern Connecticut with the lakes (1-7) known to have 
natural "landlocked" populations of A. pseudoharengus. For the comparable lakes 
without Alosa (10-16), the species of openwater Daphnia present are indicated by the 
following symbols: c, D. catawba; g, D. galeata; r, D. retrocurva. Large Daphnia 
are missing in all the "alewife" lakes. The bars at the outlets of lakes 11 and 12 
indicate that they have been dammed by man. Major intertidal marshes are cross- 
hatched. The query next to Black Pond (1) indicates that the plankton has not been 
studied. Inset shows details of Linsley and Cedar ponds. Stippled area around Cedar 
Pond is bog forest (see Fig. 3). 
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Fig. 3. Aerial view of Cedar and Linsley ponds (Branford, Connecticut). Cedar, in 
the foreground, lacks alewives, although they are common in Linsley, into which 
the outflow from Cedar drains through the surrounding bog forest (lighter in hue). 
Linsley in turn drains through a short meandering stream into Long Island Sound 
(Branford Harbor) which can be seen in the upper left corner (see Fig. 2). [Photo- 
graph by Truman Sherk] 

paratus) the food-collecting surfaces 
are proportional to the square of some 
characteristic linear dimension, such as 
body length. In Crystal Lake, for ex- 

ample, the body length of Daphnia 
catawba is about four times that of 
Bosmina longirostris, so that the filter- 

ing area of the Daphnia will be about 
16 times larger than that of Bosmina. 
Studies by Sushtchenia have shown that 
the relative rates at which Daphnia and 
Bosmina filter Chlorella -are, indeed, 
proportional to the squares of their 

respective body lengths, suggesting that 
in Cladocera the area of the filtering 
surfaces is a major determinant of 
filtration rate. In addition to this greater 
ability to collect particles in the 1- to 15- 
micron range, the larger species can 
also exploit larger particles not avail- 
able to smaller species; this appears to 
be especially significant in the greater 
competitive success of large calanoid 

copepods (20). 
There is some indication that both 

basal metabolic rate and at least a part 
of the ordinary locomotor activity may 
be lower per unit mass in the larger 
than in the smaller of related species of 
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zooplankters, although the depression of 
the basal metabolic rate may be slight 
(21). Locomotor activity is difficult to 
relate to body size, but it is likely 'that 
for herbivores a considerable propor- 
tion of such work is done in overcom- 

ing sinking. The rate of passive sink- 

ing of zooplankton up to the size of 

Daphnia galeata, with a carapace length 
of 1.5 millimeters, is proportional to the 

square of the body length. However, in 
D. pulex, which are about 1 millimeter 

longer, the rate is almost proportional to 
the body length itself (22). Therefore, 
locomotor activity probably increases 
with no more than the square of the 

length, and in larger forms shows an 
even lower rate of increase. 

Thus both greater efficiency of food 

collecting and somewhat greater meta- 
bolic economy explain the demonstrably 
greater reproductive success of the 

larger of related species. This, together 
with the fact that generation time is 
but little greater in large cladocerans 
than in small ones, undoubtedly under- 
lies the rapidity with which dominance 
can shift in this group (23). 

The size-efficiency hypothesis pre- 

diets that whenever predation by plank- 
tivores is intense, the standing crop of 
small algae will be high because of 
relatively inefficient utilization by small 
panktonic herbivores, and that of large 
algae will also be high because these 
cannot be eaten by the small herbivores. 
Whenever the intensity of predation is 
diminished and large zooplankters pre- 
dominate, 'the standing crops of both 
large (net phytoplankton) and small 
algae (nannoseston) should be relative- 
ly low, because of the greater efficiency 
of utilization of nannoseston and be- 
cause some of the net phytoplankton 
can also be eaten. 

When this prediction is tested, it is 
important that the biomass of the stand- 
ing crops of large and small zooplank- 
ters be more or less equal, and the 
only data that meet these require- 
ments are those obtained by Hrbacek et 
al. from Bohemian fish ponds with low 
and high fish stocks (19). In this ex- 
cellent study, the authors made a qual- 
itative and quantitative comparison be- 
tween the zooplankton, net phytoplank- 
ton, and nannoseston of Poltruba Pond 
in 1957, when ithe fish stock was low, 
and the situation in the same pond in 
1955, when the fish stock was high. In 
1957, Poltruba Pond. was also compared 
with a pond of roughly similar size 
(Prochiazka) with a large fish stock. 
Poltruba drains through a screened 
outlet. The biomasses (measured 
as organic nitrogen) of the zoo- 
plankton in the three situations were 
roughly equivalent, but in Poltruba 
in 1957, a large Daphnia comprised 80 
percent of the zooplankton, whereas in 
the other two situations Bosmina longi- 
rostris was dominant and rotifers and 
ciliates were common. Where fish 
stocks were high and Bosmina was dom- 
inant, the net phytoplankton (especially 
diatoms and Dinobryon) was much 
more abundant than when Daphnia was 
dominant. Moreover, in both situations 
with Bosmina dominant the standing 
crop of nannoseston was two to three 
times greater than in the presence of 
Daphnia. This was true for both its 

organic nitrogen and its chlorophyll 
content. (Photosynthesis of the nanno- 
seston in the presence of Bosmina was 
about five times greater than in the 

presence of Daphnia, a clear indication 
that the increase in the nannoseston in 
the presence of Bosmina was not merely 
an increase in ,the amount of slowly 
dying algae or detritus.) This result is 

precisely what the size-efficiency hy- 
pothesis predicts. 
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Size of Coexisting Congeners 

In both aquatic and terrestrial hab- 
itats, pairs of closely related species of 
food selectors living in the same com- 
munity and exploiting the same food 
source often apportion the available 
size array of food bits, in rough accord 
with their own divergent body sizes; 

15 

that is, the larger species takes the 
larger bits and the smaller one the 
smaller bits. This is such a common 
and well-known phenomenon among 
congeneric birds (coexisting species of 
which may differ principally in body 
size, beak size, and size of food ,taken) 
that specific instances thereof and its 
evolutionary significance do not require 

discussion here (24). We wish only to 
emphasize that food apportioning ac- 
cording to body size is a path to stable 
coexistence seldom available ito plank- 
tonic food collectors. Only in rare cir- 
cumstances could it be advantageous 
for a species of large planktonic food 
collectors to abandon the 1- to 15- 
micron size range in favor of large par- 
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tides alone, leaving these small parti- 
cles to small-sized congeneric competi- 
tors (25). 

On the contrary, many coexisting 
congeneric zooplankters are of roughly 
similar size, and presumably-accord- 
ing to the size-efficiency hypothesis-of 
similar efficiency in food collecting (26). 
This tendency towards similarity in 
body size can be illustrated by the 
association in European lakes of Daph- 
nia galeata and D. cucullata, the latter 
almos!t certainly derived from the 
former. This pair is well suited to our 
purpose because the various popula- 
tions of.D. cucullata exhibit a range 
of body size unusually large for Daph- 
nia. During midsummer, some pond 
populations of D. cucullata mature 
when the carapace is only about 500 
microns long, whereas in lake popula- 
tions the body size at the onset of 
maturity may be as much as 900 mi- 
crons. There is, of course, a complete 
array of intermediate body sizes in 
other populations. At the onset of ma- 
turity in midsummer, females of Daph- 
nia galeata are slightly larger than 
the largest D. cucullata, usually at least 
1 millimeter. As all these populations 
can be passively disseminated, clones of 
large, intermediate, and small forms of 
D. cucullata have almost certainly been 
introduced many times into each of the 
lakes in which D. galeata lives. But, as 
Wagler (27) has pointed out after ex- 
amining 87 European populations of 
D. cucullata, it is only the clones with 
the largest body size that are found co- 
existing with D. galeata. The dwarf D. 
cucullata would be competitively ex- 
cluded by D. galeata from lakes, just 
as Hrbacek observed it to be eliminated 
from ponds by larger species of Daph- 
nia, whenever decreased predation al- 
lows the larger species to exist. In fact, 
clones of dwarf forms (carapace length 
in midsummer less than 550 [s) were 
found only in ponds where they were 
associated with Bosmina longirostris. It 
is also clear from Hrbacek's studies 
of fish ponds that dwarf D. cucullata, 
like Bosmina longirostris, can dominate 
only when predation by planktivores is 
intense (28). 

Summary 

In the predation by the normally 
marine clupeoid Alosa pseudoharengus 
("alewife") upon lake zooplankton, the 
usual large-sized crustacean dominants 

(spp. of Daphnia, Diaptomus) are 
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eliminated, and replaced by small- 
sized, basically littoral, species, es- 
pecially Bosmina longirostris. The sig- 
nificance of size in food selection by 
planktivores as opposed to planktonic 
herbivores is examined, and it is pro- 
posed that all planktonic herbivores 
utilize small organic particles (1 to 
15 pt). The large species, more efficient 
in collecting these small particles and 
capable of collecting larger particles as 
well, will competitively exclude their 
smaller relatives whenever size-depend- 
ent predation is of low intensity. In- 
tense predation will eliminate the large 
species, and the relatively immune 
small species will predominate. These 
antagonistic demands of competition 
and predation are considered to deter- 
mine the body size of the dominant 
herbivorous zooplankters. 
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