
Molecular Transitions and 
Chemical Reaction Rates 

The stochastic model relates the rate of a chemical 
reaction to the underlying transition probabilities. 

B. Widom 

A chemical reaction is the result of 
a complex sequence of elementary 
molecular processes. Each molecule in 
a reaction mixture undergoes continual 
changes in its state-in its energy, ge- 
ometry, and so on-most of these 
changes, perhaps, being minute and 
scarcely noticeable, others being sudden 
and violent as the result of extremely 
disruptive collisions. The processes are 
apparently aimless, each molecule being 
excited and de-excited with no obvious 
regularity. But when we view the reac- 
tion mixture as a macroscopic system 
the molecular turmoil is invisible, and 
what we see instead is a seemingly 
purposeful drive to equilibrium, rapid 
at first, then slower, until finally equi- 
librium is achieved and the chemical 
reaction is at an end. At the molecular 
level, however, the reaction is not at 
an end, the interactions, the transitions 
from state to state, and the violent dis- 
ruptions being just as frequent and as 
confused as ever. 

The connection between the macro- 
scopic approach to chemical equilib- 
rium and the elementary molecular 
processes which underlie it is devious 
and subtle. Much of what we have 
learned about it in recent years has 
come from a study of "stochastic" mod- 
els of chemical reaction (1), and my 
purpose here is to describe these mod- 
els and to make clear what their im- 
plications are. 

A Stochastic Model 

We may isolate the essential problem 
from all extraneous difficulties and 
technicalities by supposing that the re- 
action mixture contains only a single 
kind of molecule undergoing transi- 
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tions, by whatever mechanism and 
however chaotically. Now imagine that 
each of these molecules is always in 
some well-defined state, though passing 
irregularly from state to state by in- 
stantaneous transitions as time goes on. 
To fix our ideas and to allow a pictorial 
representation, let us take the possible 
states to be discrete and represent them 
by discrete points in a plane (Fig. 1). 
The transitions from state to state 
which each molecule continually un- 
dergoes may now be represented by 
sudden jumps from one to another of 
these points. Imagine, further, that the 
states fall into two groups (separated 
by the solid boundary in Fig. 1); then, 
according to the group of states to 
which the instantaneous state of one of 
our molecules belongs, let us call it a 
molecule of chemical substance A or 
of chemical substance B. Whenever a 
molecule undergoes a transition from 
one of the A states to one of the B 
states it is contributing to the chemical 
reaction A -> B, whereas if the jump 
across the boundary occurs in the op- 
posite direction then the transition con- 
tributes to the reaction B -> A. 

We now make the model stochastic, 
or probabilistic, by specifying that a 
transition from any state i to any sec- 
ond state j, whether they be on the 
same or opposite sides of the A-B 
boundary, is determined by a transition 
probability per unit time, p j, which 
depends only on the states i and j and 
not on the number of molecules which 
happen to be in either. Thus, if at some 
instant t the number of molecules in 
state i is ni(t) and the number in state 
j is nj(t), then p,jnt is the rate (in num- 
ber of molecules per unit time) at which 
molecules are making transitions from 
state i to state j, while pinj is the rate 

at which the reverse transitions are oc- 
curring. Therefore, at the time t, the 
population in each state i is changing 
at the rate 

dni/dt =: - (pjn - p,jns), (1) 

where the summation is over all the 
states j. This expresses the net rate of 
change as the difference between the 
rate at which state i is being populated 
by transitions from all other states j 
and the rate at which it is being de- 
populated by transitions to all other 
states j. 

Equation I is a whole set of equa- 
tions, one for each state i, and together 
they determine the detailed evolution 
of the system. The equations are cou- 
pled, the rate of change dni/dt of 
population in any one state i being ex- 
pressed in terms of the instantaneous 
value not only of that ni but of every 
other n1 as well. The solution to such 
a set of coupled differential equations 
has been known for 200 years. It is 
essentially the same problem as that 
arising with coupled oscillators, which 
is solved by transformation to inde- 
pendent normal modes of vibration, 
each of which has associated with it a 
single characteristic frequency. I shall 
digress for a moment to recall the ma- 
jor features of such a resolution into 
normal modes. 

Normal Modes of Vibration 

Figure 2 is a very familiar illustra- 
tion, showing two diagrams (a and b) 
each representing two identical masses 
(the outer ones) and a third mass (the 
inner one) which may be different. The 
three masses are connected by two 
identical springs, and all are confined 
to a line. 

If initially the two springs are dis- 
tended or compressed by identical 
amounts (as in Fig. 2a) and then re- 
leased, the inner mass will remain sta- 
tionary while the two outer masses will 
move alternately toward and away 
from each other, the configuration al- 
ways remaining symmetrical, and the 
coordinates and velocities of the masses 
will vary periodically with a single 
definite frequency v1. 

Likewise, if (as in Fig. 2b) one 
spring is initially compressed while the 
other is distended to the same degree 
that the first is compressed, and they 
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are then released, the system will vi- 
brate, with the two outer masses mov- 
ing in one direction and the inner mass 
in the other (the distance between the 
outer masses remaining fixed at its 
equilibrium value), and the coordinates 
and velocities of the masses will vary 
periodically with a single definite fre- 

quency, v9. 
These very special vibrations are the 

two normal modes of the system. A 
general displacement of the masses cor- 
responds not to either one alone but 
to a combination of the two. Any 
initial conditions other than those I 
have described lead to the simultaneous 
excitation of both normal modes, and 
in such a general vibration the coordi- 
nates and velocities of the masses are 
not periodic functions with a definite 
frequency vl or v2'; instead, the dis- 
placements of the masses from their 
equilibrium positions are combinations 
of such periodic functions, 

A,cos(27rvt + 02) + A2cos(27r^2t + 02), 

with certain constant amplitudes Al and 
A2 and phase angles 01 and 02. 

More complicated systems may be 
similarly analyzed, and lead to as 
many normal modes, each with its 
characteristic frequency, as there are 
vibrational coordinates in the system. 

Normal Modes of Relaxation 

Now let us return to our model 
chemical system, the evolution of which 
is governed by the coupled Eqs. 1. As 
time goes on, the population ni(t) of 
each state i approaches a unique, con- 
stant equilibrium population, ni(oo). 
This approach to the equilibrium pop- 
ulation, as determined by Eqs. 1, is 
resolvable into normal modes of relaxa- 
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Fig. 1. The states of a molecule repre- 
sented by discrete points in a plane. The 
boundary separates the states of substance 
A from those of substance B. 
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(a) (b) 
Fig. 2. The symmetric (a) and antisymmetric (b) normal modes of vibration of two 
identical, coupled oscillators. 

tion, each of which has associated with 
it a characteristic time constant, its re- 
laxation time, which is the reciprocal 
of what we may call a relaxation rate. 
While normal modes of vibration vary 
periodically in the time, normal modes 
of relaxation decay monotonically. 
From the point of view of the theory 
of vibrations, a relaxation is a vibration 
with an imaginary frequency, whereas, 
from the point of view of the theory 
of relaxation, a vibration is a relaxation 
with an imaginary relaxation rate. 

In mathematical terms, the solution 
to Eqs. 1 is 

nt == n~ (oo) +- 2 cin exp(-xi t). (2) 
I 

The normal modes of relaxation are 
indexed by 1, and A1 is the relaxation 
rate (reciprocal of the relaxation time) 
associated with the /th mode. Pursuing 
the analogy with vibration theory, we 
see that the population ni of state i is 
a "coordinate," the displacement of 
which from equilibrium is being ex- 
pressed as a combination of normal 
modes; the "amplitude" of the Ith nor- 
mal mode in the displacement of the 
coordinate i is a constant, ci,, which 
depends not only on the transition 
probabilities p, but also on all the 
initial displacements ni (O)-nj(oo). With 
the appropriate choice of initial dis- 
placements it is possible to achieve a 
condition in which all the ci1 vanish ex- 
cept those corresponding to a single 1. 
In such a case only a single normal 
mode has been "excited," and the popu- 
lation of every state i relaxes to equili- 
brium with the same relaxation rate X/, 
via this single mode of relaxation. With 
arbitrary initial displacements, how- 
ever, all the modes are excited, and 
each displacement ni(t)-n~(oo) is a com- 
bination of all the exponentials exp- 
(-xit). Nevertheless, while the question 
of which normal modes are excited, and 
with what amplitudes, depends on the 
initial populations, the relaxation rates 
Al do not-they are functions only of 
the transition probabilities pij. In the 

language of vibration theory, the fre- 
quencies of the normal modes do not 
depend. on the initial displacements 
from equilibrium but depend only on 
the masses and force constants of the 
coupled oscillators. 

I shall now illustrate these ideas with 
an example which is the direct analog, 
in relaxation theory, of the symmetrical 
coupled oscillator system I discussed 
above. Let there be only three states, 
numbered 1, 2, 3; let the transition 
probability per unit time for the 2 -> 1 
and 3 -> 1 transitions be /[, and that 
for the 1 -> 2 and 1 --> 3 transitions be 
v; and let the transition probability per 
unit time for the transitions 2--> 3 and 
3 -> 2 be zero, so that the states 2 and 
3 are not accessible, one from the 
other, by direct transition, but only in- 
directly through state 1. Schematically, 
we express this as follows: 

2 <- 1 ?- 3. 
v v 

If, initially, state 1 has the same 
population that it is destined to have 
at equilibrium but states 2 and 3 do 
not, then state 1 will maintain a con- 
stant population during the entire re- 
laxation process, and there will be 
a unidirectional flow of molecules 
through state 1 tending to equalize the 
populations in states 2 and 3, this being 
the final equilibrium condition. This is 
a single, pure mode of relaxation, the 
analog of the asymmetric mode of vi- 
bration of Fig. 2b. During the course 
of this relaxation the deviations from 
the equilibrium populations in states 
2 and 3 vanish proportionally to 

exp(-/t), so that the relaxation rate in 
this mode is ,/. (Here is an intriguing 
puzzle: Why is the relaxation rate in 
this mode independent of v?) 

If, on the other hand, the popula- 
tions in states 2 and 3 are initially equal 
but are not at the level that corresponds 
to equilibrium, there will be a flow of 

s molecules to or from state 1 such that 
f the populations of states 2 and 3 re- 
! main equal to each other while, to- 
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gether, they come to equilibrium with 
state 1. This is the second normal mode 
of relaxation, the analog of the sym- 
metric mode of vibration in Fig. 2a. 
During the course of this relaxation 
the deviations from the equilibrium 
populations in all three states vanish 
proportionally to exp[--(/ + 2v)t], so 
that the relaxation rate in this mode is 

/ + 2v. 
Generally, however, the initial condi- 

tions will be neither of these very spe- 
cial ones, so that both modes of relaxa- 
tion will be simultaneously operative 
and the deviation from equilibrium in 
each of the three states will be a combi- 
nation of exp(-/ut) and exp[--(, + 2v)t]. 

An even simpler example, and one 
to which I later have occasion to refer, 
is that in which there are only two 
states (i = 1, 2). Equations 1 arc in 
this case simply 

- dn,l/dt dndt p:2/ n - p.-t1l2. (3) 

There is now only a single relaxation 
rate, related to the two transition prob- 
abilities by 

X = P12 - pP21. (4) 

The equilibrium condition toward 
which the system strives is that which 
causes the vanishing of the time deriv- 
atives in Eq. 3, 

n12(c)/n/:(oc) = p"/p21, (5) 

for only when the populations are in 
this ratio does the nuimber of molecules 
making the transition 1 -> 2 per unit 
time, p1in1, equal the number making 
the transition 2 -- 1 per unit time, 
p21n2,, and therefore only then is there 
no longer a net transfer of molecules 
from one state to the other. 

It is the relaxation rates AX which 
determine directly the rate of approach 
to equilibrium, and therefore, in par- 
ticular, the speed of the chemical re- 
action A -> B or B - A. Ultimately, of 
course, it is the transition probabilities 
per unit time, p.j, which govern, but 
they do so only by way of the A,, which 
are in general rather intricate functions 
of the Pi.- The number of A1 is always 
less by one than the number of states 
(which, in turn, is usually infinite!), 
and the relations between the A/ and 
the p.i become increasingly complex as 
the number of states increases (2). 

Let us index the relaxation rates in 
such a way that the smallest is called 
Al, the next smallest A,, and so on. 
Then when the elapsed time t has be- 
come so great that 

(X.-X,)t > > 1, 
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every term beyond the one with I - 1 
in Eq. 2 has become negligible com- 
pared to the term with I = 1, and for 
all times thereafter the deviation from 
equilibrium vanishes by way of this 
slowest mode of relaxation alone. 
When this condition has been reached 
-that is, when the elapsed time has 
been so great that the transient faster 
modes of relaxation are no longer mak- 
ing a significant contribution to the 
evolution of the system-the popula- 
tion in each state i varies with time 
simply as 

ni -- n4(oo) + ciexp(- X\t), 

so that 

-drn/dt - Xn - ni(oo)]. (6) 

Thus, after a sufficiently long time has 
elapsed, the population of each state 
approaches its equilibrium value at a 
rate which is proportional to its devia- 
tion from equilibrium at that instant, 
the constant of proportionality being 
A1, the smallest of the relaxation rates. 

The Chemical Reaction 

Now recall that the states i have 
been divided into two groups, as in 
Fig. 1, those belonging to one group 
being called states of substance A, those 
belonging to the other, states of sub- 
stance B. The sum of n,(t) over all the 
A states is the total number, NA(t), of 
molecules of substance A present at the 
time t, while the sum of ni(t) over all 
the B states is the total number, Nn,(t), 
of molecules of substance B. There- 
fore, after the elapse of the transient 
period, when Eq. 6 holds, the total 
numbers of A and B molecules vary 
according to 

-dN./dt X= X.[N - N,A(oo)] 
-dN,i/dt -= X[Ni - Nj(oo)]. (7) 

A most important observation was 
made at this point by Snider, in a re- 
cent incisive analysis of the stochastic 
model (3). Because the total number 
of molecules in A and B states together 
is constant, Eqs. 7 are equivalent to 

-dNA/dt dN,dt -- kNA - k'Nn (8) 

where k and k' are two constants the 
sumn of which is 

k + k' = X (9) 

and the ratio of which is 

k/k' = NB(oo)/NA(oo). (10) 
In other words, after the elapse of the 

transient period-that is, after times 
which are long compared to 1/((A2, - A1) 
-the total population in all the A 
states together and the total population 
in all the B states together behave 
formally as though they were the in- 
dividual populations in a two-state sys- 
tem. Equation 8 is analogous to Eq. 3, 
with k and k' taking the place of the 
transition probabilities P12 and P21, 
while Eqs. 9 and 10 are the analogs of 
Eqs. 4 and 5. 

The importance of Eq. 8 lies in the 
fact that it is of a form frequently 
found to hold experimentally as one 
of a class of chemical reaction-rate laws 
(4). The stochastic model, therefore, 
accounts for one of the phenomenolog- 
ical laws of chemistry. To be sure, the 
theory qualifies the validity of Eq. 8 
by restricting its application to times 
that are long compared with 1/(A2 - 

A1), but, as a practical matter, the 
transient period during which modes 
of relaxation other than the very slow- 
est are significant is over almost in- 
stantaneously. Typically, the relaxation 
times 1/A2, I/A.1, 1/A4, . . . are less 
than a microsecond, while the relaxa- 
tion time 1/,k may be of the order of 
seconds, or years, or millennia. It is 
1/A, which sets the characteristic time 
scale of the chemical reaction once the 
transients have decayed, and on that 
time scale the time during which the 
transients have not decayed is infinitesi- 
mal. Practically from the initial instant, 
therefore, the rate of the chemical re- 
action is determined by Eq. 8, with 
constants k and k' that depend on the 
transition probabilities per unit time 
and on the choice of the A-B boundary 
in Fig. 1, but on nothing else. 

Notice that these conclusions are en- 
tirely independent of which states we 
have chosen to call states of substance 
A and which we have chosen to call 
states of substance B. This is fortunate, 
because the position of the A-B boun- 
dary is in principle quite- arbitrary. 
Suppose two experimenters make this 
decision in different ways and then 
proceed to measure the constants k and 
k' in Eq. 8. They do not agree on what 
NA and NT, are at any time; they do 
not agree on the value of the ratio 
Np(oo)/NA(oo) (called the equilibrium 
constant for the reaction A-> B); and 
they do not agree on the values of the 
rate constants k and k'. Yet each one 
finds his rate-constant ratio k/k' equal 
to his equilibrium constant. Further, 
and most significantly, the two experi- 
menters are in complete agreement on 
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the value of the sum of the two rate 
constants, k + k'; for this is xA, the 
slowest relaxation rate in the system, 
and the relaxation rates depend on the 
transition probabilities alone and have 
nothing whatever to do with the divi- 
sion of the states into two groups. 

As a practical matter, however, if 
the A-B boundary is chosen so as to 
have a real chemical significance, then 
there will be very little arbitrariness in 
k and k'. If the substances A and B are 
chemically distinguishable, then they 
transform into each other at a rate 
slow enough to be observed. Therefore, 
there is likely to be an energy barrier 
between them-that is, there is likely 
to be, somewhere in Fig. 1, a band 
containing states of high energy only. 
Each of the two experimenters would 
then surely choose his A-B boundary 
somewhere in this band, even if they 
do not agree on precisely where in the 
band it should lie. But all the states in 
the band, being states of high energy, 
are destined to have very low equilib- 
rium populations, and so to make neg- 
ligible contributions to the equilibrium 
constant NI,(oc)/NA(oo). Therefore, 
though there may remain considerable 
arbitrariness in the position of the 
boundary, so long as the boundary is 
chosen somewhere in the high-energy 
band this arbitrariness does not sig- 
nificantly affect the ratio k/k'. Then 
with the sum k + k' unique, and the 
ratio k/k' practically unique, k and k' 
separately are practically unique. 

Reaction Rate Coefficients 

Because of the structure of Eq. 8, 
and its analogy with Eq. 3, where P12 
and P21 are transition probabilities per 
unit time, it is almost irresistibly tempt- 
ing to interpret the rate constants k and 
k' as being also transition probabilities 
per unit time. The unwary would surely 
suppose that kN4 is the number of A 
molecules making the transition A -> B 
per unit time, that k'Nu, is the number 
of B molecules making the transition 
B -~ A per unit time, and that Eq. 8 
is simply expressing the net A -> B flux, 
-dNA/dt, as the difference between 
two opposing fluxes. This is certainly 
the correct interpretation of Eq. 3; is 
it even possible to conceive of its not 
being also the correct interpretation of 
the strikingly analogous Eq. 8? 

The answer, forcefully argued by 
Rice (5) and subsequently confirmed 
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Fig. 3. Four different reaction rate coeffi- 
cients. The duration of the transient pe- 
riod is highly exaggerated here, being 
actually too short to be visible on this 
scale. The whole interval of time covered 
in the diagram is of the order of magni- 
tude of the longest relaxation time, I/X,, 
of the system. 

by Snider (3), is shattering: The rate 
constants k and k' are not the probabili- 
ties per unit time of an A molecule 
making an A - B transition and a B 
molecule making a B -> A transition; 
kNA and k'N1I are not the separate 
A -> B and B > A fluxes. Let us sym- 
bolize the equilibrium constant N,(oo)/ 
NA(oo) by K; it then follows from Eqs. 
9 and 10 that 

K 
k-= r K -1 q- K MX (11) 

That is, k and k' are certain simple frac- 
tions of the same relaxation rate, Al, 
which, in turn, depends on all the tran- 
sition probabilities per unit time piu. 
Thus, k is not just some average rate 
of A -> B transitions but is, rather, a 
complex of A -> B, B -~ A, A - A, and 
B -> B transition rates; and so is k'. 

In an ordinary measurement of a 
chemical reaction rate, where the con- 
centrations of the relevant substances 
in a reaction mixture are measured as 
functions of the time, it is just k and 
k' which are determined. On the other 
hand, rate coefficients which, unlike k 
and k', do refer to the separate A -> B 
and B -> A fluxes, are easily found in 
the stochastic model, and are valuable 
theoretical constructs (6, 7). In Fig. 3 
are shown three such rate coefficients, 
keq, r, and s, in addition to the phe- 
nomenological rate constant k. (There 
are also corresponding k(1, r', and s' in 
addition to k'.) Each of these three has, 
at one time or another in the history 
of reaction rate theory, been either 
confused with, or used to approximate, 
the rate constant k. 

The quantity r is the probability per 
unit time that a molecule in an A state 
will make a transition to some B state 
-that is, it is precisely the quantity 
that k, surprisingly, proved not to be. 
Many of the interesting properties of 
this rate coefficient were discovered by 
Pytm and Ross (6). It and its partner 
r' are such that 

-dNA/dt - dNB/dt -- rN - r'NB, 

where now rNA and r'Ni,, unlike kN, 
and k'NI,, are indeed the A -> B and 
B -> A fluxes. The difference rNA - 

r'N, equals the difference kNA - k'N1:. 
The rate coefficient r, however, depends 
both on the time (as indicated sche- 
matically in Fig. 3) and on the initial 
condition of the system-that is, on the 
initial deviation from equilibrium 
ni(O)-n,(oc) in each state i. As the sys- 
tem approaches equilibrium, r gradual- 
ly levels off at the constant value keq. 

This limiting value keq is an interest- 
ing quantity in its own right. When 
every state of the system has its equi- 
librium population there is no longer 
a net flow A -B or B - A, but only 
because the separate, opposing flows 
rNA and r'Nr, have become equal, not 
because they have ceased. The proba- 
bility per unit time that an A molecule 
will make a transition to some B state, 
when the system is at equilibrium, is 
keq. But it is still k, and not k?q, which 
is the phenomenological rate constant, 
however close the system may be to 
equilibrium (3, 5). In spite of this 
distinction, however, k0q and k'(.. share 
with k and k' the property that their 
ratio is the equilibrium constant; for at 
equilibrium the fluxes rNA and r'N1, are 
equal, while r, r' have become kp, k'oq 
and NA, Np, have become N_x(oo), 
N(?O). 

If, initially, the reaction mixture con- 
tains only substance A, but no B, then 
according to Eq. 8 the rate of the re- 
action is simply kNA, and this remains 
true until the amount of B produced 
by the reaction is large enough for 
k'N,1 to be significant compared to 
kNoA. But the coefficient of NA is the 
same k, even in this early stage of the 
reaction, as it is later; indeed, k is a 
constant; so it is still a complex of all 
the transition probabilities, including 
those of B - A transitions, even when 
no perceptible amount of substance B 
is present. The point is that the early 
stage of the reaction, defined by k'Np, 
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<< kNA when no B is present initially, 
is still late compared to the transient 
period. During the transient period an 
imperceptibly small number of B mole- 
cules appears in very highly reactive 
states, too small a number to make 
k'Np, appreciable, but quite large 
enough, in states of sufficiently high 
reactivity, to affect significantly the net 
rate of the A -> B reaction. Thus, the 
B -> A flux, r'Np, is not negligible com- 
pared to the A -> B flux, rNA, even 
when the term k'Np in the phenomeno- 
logical rate equation is negligible com- 
pared to kNA. There is no way, in an 
ordinary reaction mixture, of elimi- 
nating the influence of B -> A transi- 
tions so as to measure the rate of A - 

B transitions alone (8). 
This can, however, be accomplished 

theoretically by considering the hypo- 
thetical circumstance in which mole- 
cules in B states are removed from the 
system the instant they appear. Then 
molecules in A states react, and instan- 
taneously disappear, in accordance with 
a rate law of the form 

-dNA/dt = sNA. (12) 

This defines the last rate coefficient, 
s, in Fig. 3. After the elapse of a tran- 
sient period which is of the order of 
magnitude of, but not identical with, 
the transient period 1/(A2 - At), the co- 
efficient s assumes a constant value. 
This constant s provides a logical bridge 
between the rate constant k and the 
reaction probability r, and illuminates 
both. 

Because, in the situation to which s 
refers, no B molecules are ever present, 
sNA is unambiguously interpretable as 
an A -> B flux. In this respect s is, like 
r, the probability per unit time that an 
A molecule will make a transition to 
some B state. But what these reaction 
probabilities are, at any moment, de- 
pends on the instantaneous populations 
of the A states, being large or small 
according as the most highly reactive 
of the A states are populated to a 
greater or lesser extent. The existence 
of a B ---> A flux affects the populations 
of the A states and, therefore, affects 
also the A -> B reaction probability r; 
whereas, when molecules in B states 
are removed from the system as soon as 
they are formed, there is no B -> A 
flux influencing the populations of the 
A states. The reaction probability r, in 
this idealized circumstance, is s. 

From another point of view, how- 
ever, s has an even more fundamental 
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connection with k than it has with r. 
The instantaneous removal of B mole- 
cules from the system, in the definition 
of s (or of A molecules in the defini- 
tion of the corresponding s'), is only 
one way of insuring that there shall be 
no opposing flux influencing the dis- 
tribution of molecules among reactant 
states, thereby affecting the reaction 
probability. Another, equally hypothet- 
ical, way to insure this is to set equal 
to zero all the transition probabilities 
that refer to transitions from B states 
to A states, leaving the remaining tran- 
sition probabilities unaltered. This pro- 
duces a new system, related to the 
original one by a definite prescription. 
Because molecules are now incapable 
of undergoing transitions from B states 
to A states, the equilibrium condition 
of the new system is one in which all 
molecules have accumulated in B states, 
so that the equilibrium constant K =- 
Np,(oo)/NA(oo) is infinite. The relaxa- 
tion rate Ak in the new system is an 
altered version of the original XA but 
is still a finite, positive number. Then 
from Eq. 11, in the new system k = -\ 

and k' 0, so that Eq. 8, the phenom- 
enological rate equation, reduces to 
the form of Eq. 12. Thus, the rate co- 
efficient s associated with the original 
system is precisely the phenomenolog- 
ical rate constant k of the hypothetical- 
ly altered system. (The corresponding 
s' in the original system is the rate con- 
stant k' of a still different system-that 
which is derived from the original one 
by setting equal to zero each pi that 
refers to A -> B transitions rather than 
those that refer to B -> A transitions.) 
Then the rate coefficient s shares with k 
(as r does not) the fundamental prop- 
erty of being determined by the transi- 
tion probabilities alone, without refer- 
ence to the initial condition of the 
system or to the time which has elapsed 
in the reaction, while, as we saw be- 
fore, it shares with r (as k does not) 
the fundamental property of being a 
reaction probability per unit time. 

Taking again the point of view that 
s is the probability, per unit time, of an 
A -> B reaction, under circumstances 
where the products of the chemical re- 
action are instantaneously removed 
from the system, it is easy to see why, 
as shown in Fig. 3, s is less than keq, 
which is the A -> B reaction probabil- 
ity at equilibrium. When the chemical 
reaction occurs with instantaneous re- 
moval of products, all A states are 
depleted but the most reactive of the 

A states are preferentially depleted. 
When, on the other hand, transitions 
A -> B occur at equilibrium, they again 
occur preferentially from the most re- 
active A states, but now there is no 
depletion because the opposing B -- A 
flux preferentially repopulates just these 
most reactive states. Thus, at equilib- 
rium, a greater fraction of the A mole- 
cules are in highly reactive states than is 
the case when B molecules are absent, 
so the probability per unit time that an 
arbitrarily selected A molecule will re- 
act is greater in the former case than 
in the latter: keq > s. It is also neces- 
sarily the case that k,q is greater than 
the rate constant k. The reason is fun- 
damentally the same, but the argument 
is more intricate because k is not a 
simple reaction probability per unit 
time (9). 

We have seen that the ratio of the 
rate constants, k/k', and the ratio of 
the equilibrium reaction probabilities 
per unit time, k(q/k'eq, are both equal 
to the equilibrium constant K-that is, 
to the ratio of populations, Np,/N^, 
in the equilibrium state of the sys- 
tem. On the other hand, r and r', 
before having attained their limiting 
values keq and k'eq, do not have this 
property (6). Likewise, s and s' do 
not; s, as we have seen, is the k of a 
hypothetical system which is related 
to the original system in a certain spe- 
cified way; s' is the k' of a second 
hypothetical system, and the ratio of 
the two bears no simple relation to the 
equilibrium constant K of the original 
system. Summarizing these equalities 
and inequalities, we have 

k/k' _ keq/ k'q = K 
r/r' -4 K, s/s' = K. 

Summary and Critique 

The stochastic model shows clearly 
how different the behavior of the sys- 
tem may seem according to whether 
it is viewed at the molecular or the 
macroscopic level, and in this respect 
the model closely imitates just those 
features of the approach to equilibrium 
which we remarked at the beginning. 
Though the transition probability per 
unit time, pj, introduces a bias which 
makes some states j more easily acces- 
sible from state i than other states i 
are, any one molecule still appears to 
jump in an irregular and unpredictable 
manner from state to state. This does 
not cease when the system reaches 
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equilibrium, but goes on forever. But 
if we look only at the total populations 
of the various states and ignore the 
identities of the molecules which com- 
pose those populations, we see a 
smooth, efficient, and inexorable drive 
to a determinate equilibrium condition. 
If the initial conditions are such that 
more of the molecules are in A states 
and fewer are in B states than is the 
case at equilibrium, what we see at the 
macroscopic level is the chemical re- 
action A .-> B. 

A very serious question which is 
begged rather than answered by the 
stochastic model is: What are the real 
origins of the transition probabilities 
per unit time? Once we assume them 
to exist, then Eqs. 1, and the irreversi- 
ble approach to equilibrium which is 
implied, are immediate consequences; 
yet the system is composed of interact- 
ing molecules which satisfy time-reversi- 
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ble dynamical laws, so it is far from 
obvious how there could have arisen 
the fundamental distinction between 
past and future which is implied by the 
approach to equilibrium. While many 
aspects of this phenomenon are now 
understood, the general question, in one 
or another of its guises, is one of the 
continually recurrent problems of 
modern science (10). 
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Megaloscience 

Because of massive organization and large budgets, 
scientists are heavily involved with governments. 

J. B. Adams 

Megaloscience 

Because of massive organization and large budgets, 
scientists are heavily involved with governments. 

J. B. Adams 

I have chosen the title "Megalosci- 
ence" for this discussion of scientific 
research and its interaction with gov- 
ernments and universities in order to 
convey the impression of very large- 
scale scientific research with just a 
hint of underlying mania. 

Scientists who have grown up with 
this activity and who are still involved 
in it cannot pretend to be unbiased, 
but we can try as objectively as pos- 
sible to analyze the problems which 
our activities have raised and to find 
reasonable solutions to them. We must 
address our minds to these problems 
now, if only because governments have 
become very much concerned with 
scientific research. Partly their con- 
cern is due to the rising cost of re- 
search and partly it is due to a growing 
realization in political circles that scien- 
tific research and development are the 
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mainspring of our type of civilization. 
This concern must ultimately lead to 
decisions being taken by governments, 
and if we are to take an effective part 
in the decision-making we must first 
clear our own minds. 

Even if our thinking does no more 
than dispel that public image of scien- 
tific research so well summed up by 
Academician Artsimovich, "Scientific 
research is a method of satisfying pri- 
vate curiosity at the public expense," 
it will not have been in vain. 

Limiting Scientific Research Budgets 

To the man in the street the im- 
pressive thing about megaloscience is 
its apparently insatiable demand for 
money. Where it all goes and how it 
is used is a mystery to most people. 
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What results come out are by and 
large incomprehensible to almost 
everybody, including even scientists in 
other fields of research. 

To the astute civil servant a far 
more ominous characteristic is the 
growth rate of scientific activity. Ever 
since the 17th century, we are told, 
the number of scientists has doubled 
every 15 years and the cost of scien- 
tific research has doubled every 5 years. 
We should not, of course, accept these 
statements without some investigation, 
particularly on such points as the def- 
inition of scientist used in the statistics, 
but during my own professional life- 
time these doubling times seem to be 
about right. Extrapolation of these 
growth rates gives the fascinating and 
unlikely result that all the national 
incomes of our countries will be spent 
on scientific research in the year 2000 
and everybody will be scientists a few 
decades later. Clearly, between now 
and the year 2000 something must 
occur to limit the growth of scientific 
research, and our problem is to deter- 
mine what the limit should be and 
how it can be reached without un- 
stable oscillations. 

Such figures as exist show that in 
countries such as the United States and 
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