
Table 1. Judgments of the brightest pair of 
flashes in a trio. 

Interflash 
Sub- interval (msec) N 
ject ject 

9 16 25 

With filter 
E 76 23 9 108 
H 72 32 4 108 
L 175 35 6 216 
S 67 29 12 108 

Without filter 
E 84 14 8 106 
H 63 30 15 108 
L 147 42 27 216 
S 65 25 18 108 
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Table 2. Number of times (of 16 compari- 
sons) the pairs of flashes with 9-msec inter- 
flash intervals produced amplitudes greater 
than those with 16-msec intervals. 

Sub- Ordinate Measured 
ject 120 210 (sum of 10) 

E 12 15 15 
H 14 14 16 
L 15 15 15 

Table 2. Number of times (of 16 compari- 
sons) the pairs of flashes with 9-msec inter- 
flash intervals produced amplitudes greater 
than those with 16-msec intervals. 

Sub- Ordinate Measured 
ject 120 210 (sum of 10) 

E 12 15 15 
H 14 14 16 
L 15 15 15 

were obtained for each channel. (For 
example, if channels 1 and 3 were 
used for 9-msec separations and chan- 
nels 2 and 4 for 16-msec separations, 
the recording sequence would be 1-2- 
4-3, repeated four times.) The com- 

puter stored and averaged the output 
of the Offner over the 0.5-second in- 
terval initiated by the first flash of 
each pair. Flash pairs followed one 
another at intervals of 1.1 seconds. 
Six to eight flash pairs were presented 
before each set was recorded. Four 

complete sessions as described were 
run with each subject. 

The data for the first phase (Table 1) 
show that pairs of flashes with 9-msec 
interflash intervals were most frequent- 
ly judged to be brightest, pairs with 
25-msec interflash intervals were judged 
as brightest least frequently. Simple 
statistical tests (chi square) show the 
finding to be significant for each of 
the four subjects at each of the two 
luminances. Thus, although the sub- 
jects were "guessing," forced judg- 
ments indicate that the sensory re- 
sponse varied as a function of flash 
separation. For this method of stimulus 
presentation, wherein light is not con- 
tinuously present for a given interval 
of time, Bloch's law seems to be valid 
only as a first approximation. 

Figure 1 illustrates the nature of 
the differences in the evoked potentials 
obtained with the 9-msec and the 16- 
msec interflash intervals during a typi- 
cal recording session. The two top 
tracings represent the 9-msec condition, 
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while the two bottom tracings represent 
the 16-msec condition. Differences in 
the overall wave forms, representing 
differences in the relative amplitudes 
of the various components of the com- 

plex response pattern, are evident for 
the two conditions. 

The records were analyzed by mea- 

suring amplitudes at certain points in 
time following the onset of stimula- 
tion. Three such indices of response 
amplitude were agreed upon before 
the experiment was performed, this 
choice being based on the results of 
previous studies in our laboratory in 
which flash luminance was varied sys- 
tematically. One index was the trough- 
to-peak amplitude between the large 
negative peak at a latency of about 80 
msec and the positive peak at about 
120 msec; a second was the trough- 
to-peak amplitude for the positive peak 
at about 210 msec; and the third was 
the sum of the ordinates, again from 
the 80-msec trough as a baseline, 
as measured at 20-msec intervals from 
60 to 240 msec. Thus the last was the 
sum of 10 ordinates specified by lat- 

ency. Then each index was compared 
with the corresponding index for each 
of the two recordings of the evoked 
potential for the alternative interflash 
interval in the same block. Thus four 
comparisons were made in each of 
the four blocks for each subject. For 
most of the comparisons (Table 2), the 

pairs with the shorter interflash interval 
show the larger index. Application of 
the sign test shows that the differences 
found are statistically significant at a 
high level of confidence. 

These findings, obtained with the 
average-response computer, attest to 
the power of this technique for study- 
ing the relation between neural and 
sensory events; it was necessary to em- 
ploy what is probably the most sensi- 
tive psychophysical technique available 
in order to establish the relative bright- 
ness of the various fused flash pairs. 
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University of Arizona, Tucson 
CARROLL T. WHITE 

U.S. Navy Electronics Laboratory, 
San Diego, California 92152 
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Some Kinetic Properties of a 
Deterministic Epidemic Confirmed 

by Computer Simulation 

Abstract. Representative epidemic 
transients were generated by computer 
by a known, plausible mechanism. Ac- 
curate retrieval of the individual rate 
constants and confirmation of their 
predictive value resulted from a manual 
test of the mechanism by which the 
computer outputs were generated. The 
method is applicable in principle to any 
regenerative process opposed by ex- 
ponential decay. 

Muench (1) has discussed the appli- 
cability of certain deterministic models 
to epidemiology. His treatment deals, 
however, with the properties of an 

already established endemic steady- 
state, and not with the transient behav- 
ior that typifies the true epidemic. 
Muench's work, if read without proper 
attention to this distinction (2), can 
lead to the unrealistic conclusion 
that the rate of growth of an epidemic 
should be greatest at the moment of 
its birth. 

Bailey (3) has described a model that 
acknowledges the need for an auto- 
catalytic component in the propaga- 
tion of an epidemic outbreak, but in- 
corporation of the opposing process of 
extinction required to account for its 
transience leads to a set of differential 
equations that appears not to have a 

general analytic solution. The approxi- 
mation that Bailey presents is of little 
or no use as a mechanistic criterion, 
and probabilistic treatment of the same 
(4) or an even simpler (5) model leads 
to similar (6) and equally cumbersome 
results. 

A test for consistency between the 
Bailey model and a given set of ex- 

perimental data requires a method for 
calculating separate numerical values 
for the two specific rate constants for 
the processes of infection and recovery 
during a significant part of the duration 
of the epidemic. The same mechanism 
should, by definition, also be applicable 
to the dynamic behavior of other real 
systems whose parts likewise appear by 
self-replication (7) and disappear by 
lst-order attrition (8); it seems desir- 
able, for this reason, to describe here a 

simple, graphic method by which the 
required mechanistic test can be per- 
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Table 1. Comparison of the properties found with the assigned or predicted properties of the computer-simulated epidemics shown in Figs. 1 
to 4. The input values of kl and k, were chosen, after some exploratory runs with an analog computer (24), for their usefulness in illustrating 
certain points made in the text. Input assignments for x0, y,, z,, and 6( are given in the legends to Figs. 1 to 4. The output values of x,,,, y,,, z,,,. 
o ,,,. and t,,, were read directly from the computer record to the nearest 0.02 in t. All remaining entries were derived by methods described in the 
text. The theoretical relevance of these methods to a real epidemic is indicated by the agreement between comparable entries in the table. (A, 
assigned; P, predicted; F, found.) 

k:, Tk^ ,, y ,, Z ,,, 1, n 

A F A F P F P F P F P F P F A F 

I 1.000 0.998 1.290 1.289 1.29 1.27 7.07 7.07 2.64 2.66 2.05 2.06 0.47 0.46 11.00 11.00 

2 1.200 1.197 1.550 1.551 1.29 1.31 7.07 7.06 2.64 2.63 1.70 1.69 0.39 0.38 11.00 11.00 

3 1.000 0.998 2.000 2.000 2.00 2.01 5.78 5.78 3.22 3.21 1.61 1.62 0.44 0.44 11.00 11.00 

4 1.000 0.998 5.000 5.000 5.00 4.99 2.54 2.53 3.46 3.48 0.69 0.70 0.36 0.36 11.00 11.00 

? Invariant to 5 decimal places over the entire integration range. 
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will be retained in acknowledgment of 
the origin of the model, but the method 
should be equally relevant to chemical 
and to other biologic systems when 
their dynamics are controlled by the 
same mass action effects (9). The 
epidemic concept thus becomes a spe- 
cial case of the generalized birth-death 
process treated by Kendall (10) and by 
others (6, 11). 

Study of the Bailey mechanism, 

X + Y --> 2Y -> 2Z 

requires the following definitions: 

n = a constant, representing total popula- 
tion density in a closed but freely 
intermingling population which occupies 
a locale of constant, unit size. 

x density of susceptible members, X, of 
the population in circulation at time t. 

y =density of members, Y, of the popula- 
tion who, at time t, are in circulation 
and capable of transmitting the infec- 
tion. 

z = density of members, Z, of the popula- 
tion who are recovered and isolated, 
recovered and immune, or dead at time 
t. The model does not distinguish 
among these possible fates for Y, but re- 
quires only that the step, Y -> Z, shall 
represent net Ist-order removal of sub- 
jects from the susceptible-infectious pool 
by one or more such processes. 

Xo, Yo, and Zo= values of the respective 
variables at t = 0. 

k = specific rate constant for the infec- 
tious process: a composite measure of 
the rate of successful exposure and the 
incubation period. 

k2 = specific rate constant for the recovery 
process: an inverse measure of the dura- 
tion of the disease. When the step, 
Y -> Z, represents collectively both 
death and recovery, then k2 will repre- 
sent the sum of the rate constants for 
the individual processes. 

The first step is autocatalytic and the 
second step is Ist-order, so the relevant 
rate equations are: 

dx/dt = -k,xy (1) 
dy/dt = kxy - k2y (2) 

dz/dt := k2y (3) 

Since the population is closed, a sup- 
plementary conservation equation, 

x+y +z = n (4) 
will also apply. 

The autocatalytic feature by which 
this model differs from the endemic 
propagation model of Muench appears 
(12) as positive feedback, y, in the k,xy 
term of Eqs. 1 and 2. Extension of 
the Bailey mechanism to chemical or 
to other kinds of biologic self-replica- 
tion would consider Y the template, 
formed autocatalytically from species 
X and converted to Z by any Ist-order 
process whatever. 
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At least one infectious unit, Y, is 
required to trigger the epidemic, so the 
earliest permissible boundary conditions 
are, in terms consistent with Eq. 4, 

xo =n - 1 

yo = 1 

Zo = 0 

(5) 

(6) 
(7) 

In practice, of course, an epidemic is 
never detected as soon as implied by 
Eqs. 5 to 7, and other, more realistic 
initial conditions will, in fact, always 
prevail. The results to follow will apply 
when the initial conditions refer to any 
belated point, to > 0, after the epidemic 
is known to have begun; it will be more 
instructive, however, to emphasize here 
the ideal case when to = 0, since the 
expected early lag in infection rate will 
then be more clearly evident. 

Solution of Eqs. 1 to 3 is compli- 
cated by their nonlinearity and, for 
this reason, Bailey had to assume that 
z <<< k2/kl as a means of perform- 
ing one of the necessary integrations. 
This assumption is valid only during the 
earliest stage of epidemic spread or for 
epidemics of the mildest sort, but, even 
if granted, the resulting approximation 
has little diagnostic value. This diffi- 
culty can be avoided, however, by in- 
troducing a simplifying parameter, 0, 
defined by French (13) and by Wide- 
qvist (14) as follows: 

0 -f y dt (8) 

The practical value of the 0-function as 
a device for integrating Eqs. 1 to 3 lies 
not only in the ease and sufficient ac- 

curacy with which it can be evaluated 
graphically, but also in its simplicity 
as a measure of the cumulative "man- 
hours" of infection already spread by 
the process by time, t. The fuller signi- 
ficance of the 0-function as a means of 
characterizing this process will be ap- 
parent later. 

Differentiation of Eq. 8 gives, 

do/dt - y (9) 
and substitution of Eq. 9 into Eqs. 1 
to 3 gives, 

dx/d = - k,x (10) 
dy/d = k1x - k2 (11) 

dz/do = k. (12) 

Introduction of the 0-function has, in 
effect, reduced by one the number of 
variables in the problem, and Eqs. 10 
to 12, by contrast with Eqs. 1 to 3, 

can now be integrated. Integration of 
Eqs. 10 and 12 is sufficient, since y is 
always available from Eq. 4 by differ- 
ence. The results, 

In x = - kio + ln xo 

and 

z - k2o + zo 

(13) 

(14) 

are linear, so numerical values for k, 
and k2 can now be determined as fol- 
lows. 

1) Graphic integration of a plot of 
y versus t from t - 0 to various values 
of t gives, as specified by Eq. 8, a 
series of values for 0. Since 0 is a 
cumulative function of time, it will be 
most meaningful when the initial time 
to which it refers is clearly identifiable 
as the beginning of epidemic spread. 
When this is not possible, resort to the 
extrapolation method discussed by Bak 
(15) may be useful. 

2) A plot of these successive values 
of 0 against synchronous values of z 
gives a line whose slope is k2, as re- 
quired by Eq. 14. Dimensional analy- 
sis (16) of Eq. 3 shows that k2 has the 
dimension, recoveries or deaths (or 
both) per unit time. 

3) The same values of 0 plotted 
against synchronous values of decadic 
log x gives a line whose slope is as 
required by Eq. 13, -kl/2.303. The 
dimensions of k1 are effective contacts 
per person per unit time, evident from 
a dimensional study (16) of Eq. 1. 

Linearity or nonlinearity of the re- 
sulting plots then indicates that the 
composite process does or does not, 
in fact, occur by the proposed mechan- 
ism. Bailey's presentation, by contrast, 
permits at most a calculation of the 
ratio, k./k,, with less-committal mechan- 
istic insight than provided by a knowl- 
edge of k, and k. separately. When the 
model truly applies, the values of k, 
and k,i will become unique determinants 
of the course of the epidemic, and will 
represent, in a kinetic sense, the only 
possible distinction between one kind 
of epidemic and another. Some of the 
predictive properties of these constants, 
once obtained for a particular kind of 
epidemic, will be referred to later in 
this report. 

The foregoing solution of Eqs. 1 to 
3 in terms of 0 is still only a partial 
solution, since it does not define ex- 
plicitly the time-dependence of the 
variables. This dependence can be de- 
picted accurately and with ease, how- 
ever, by computer simulation. The re- 
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suiting "epidemic" will have "occurred" 
by a known mechanism at a known 
rate and will therefore serve as a means 
for testing the methods in question, in- 
cluding some which are discussed be- 
low. The results will, in addition, be 
amenable to direct comparison with 
actual epidemiologic data. 

Figures 1 to 4 represent smoothed 
digital simulations of this kind, accom- 
plished by use of the University of 
London Atlas computer programmed 
for solution of Eqs. 1 to 3 and Eq. 8 
in terms of the four particular sets of 
input conditions quoted in the legends 
for the figures. Input values of x0, kl, 
and k2 were in each case chosen such 
that xo > k2/k,, as required before an 
epidemic can occur (3, ch. 4). The 
further stipulations, xo >> yo > 0, 
0,) = 0, and z0 = 0, served to prime 
the infectious process and to assure 
representation of its course before, as 
well as during and after, its peak. 

The computer program was written 
for 4th-order Runge-Kutta solutions 
(17) of Eqs. 1 to 3 and Eq. 8 with a 
constant step-length of 0.02 in t. Com- 
puter summation of x, y, and z at each 
time increment gave, by Eq. 4, cor- 
responding values for n, and the con- 
stancy of these values to five decimal 
places over the entire integration range 
gave assurance that rounding errors 
did not accumulate during the stepwise 
solution. Each solution was then re- 
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peated with a constant step-length of 
0.05 in t in order to provide an indica- 
tion of the magnitude of truncation 
errors. Since the truncation error in- 
troduced by the Runge-Kutta method 
is proportional to the 5th-power of the 
step-length, the errors in the integra- 
tion for At = 0.02 should be (0.02/ 
0.05)5 , 0.01 as large as those with 
At _ 0.05. The largest discrepancy 
noted between the computer print-outs 
for the duplicate solutions is about 6 
units in the fourth decimal place, so 
the solution at the smaller step-length 
should be correct to about 6 units in 
the sixth decimal place. An error of 
this size is, of course, far less than the 

graphing errors inherent in the man- 
ual construction of Figs. 1 to 6 from 
the computer log. 

Theoretical correctness of the present 
mechanistic test is evidenced by linear- 
ity of the correlations appearing in Figs. 
5 and 6, obtained by application of 
graphic steps 1 to 3 to each of the 
computer outputs shown in analog form 
in Figs. 1 to 4. An indication of the 
computational accuracy of the method 
is seen in Table 1, where the assigned 
computer input values for k, and k2 
are compared with those retrieved by 
application of manual steps 1 to 3 to 
Figs. 1 to 4. 

The changes described by Figs. 1 to 
4 are, of course, fictional in the sense 
that x, y, z, and 0 will always be in- 

teger-valued functions of time; the 
continuity implied by these figures 
will, thus, be approached only when 
the population is much larger than the 
one chosen here. The illustrative pur- 
pose of Figs. 1 to 4 is, however, un- 
affected: Fig. 4 shows, for example, 
that the model is realistic in permitting 
the demise of a mild epidemic with- 
out affecting all susceptibles. Figure 1 
illustrates, by contrast, the possible per- 
sistence of infection long after the sus- 
ceptible pool has been dried-up by a 
more severe outbreak. Further com- 
parison of Figs. 1 to 4 shows that two 
equally severe epidemics may peak at 
different times (Figs. 1 and 2), while 
two epidemics that peak at the same 
time may differ in severity (Figs. 1 and 
3; 2 and 4). The obvious dependence 
of these effects on the relative magni- 
tudes of k, and k2 has been simplified, 
in the four cases illustrated, by delib- 
erately holding constant the relative 
inoculum size, yo/xo. The nature of 
this dependence can then be established 
by solving Eqs. 1 to 3 and Eq. 8 for 
the properties of the epidemic at the 
time of its peak. 

The point, y,, corresponding to the 
inflection in the y-trace, can be identi- 
fied algebraically by first setting 
dy/dt - 0 in Eq. 2: the immediate 
result, 

(15) 
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which defines a synchronous point on 
the x-trace, now makes clear the re- 
quirement stated earlier that xo be > 
k,/kx before an epidemic can occur. 
Integration of the quotient of Eqs. 1 
and 3 and substitution of Eq. 15 into 
the result yields 

Zm = 2.303 Xm log (Xo/X,) (16) 

for the associated value of z. The re- 
quired value for Ym then results, by 
difference, from the relationship 

ym = n- (xm + Z.) (17) 

The predicted value for the correspond- 
ing point, 0, on the 0-trace results, of 
course, from replacing z in Eq. 14 with 
the value of Zm calculated by use of 
Eq. 16. The quantity 0n, representing 
the integrated amount of infection 
spread by the process during the period 
to -> tm, has both a time and intensity 
dimension and may thus be taken as 
a more meaningful definition of epi- 
demic severity (18) than is offered by 
y, alone. Note in Table 1, for example, 
that Figs. 1 and 2 represent epidemics 
of equal peak intensity (ym) but ob- 
viously different severities (0m). 

When zm << xm, an approximate 
value for the time-of-occurrence of the 
epidemic peak, t, is available-though 
with difficulty-by substituting zm into 
Bailey's result (3) for z as a function 
of t. None of the epidemics repre- 
sented in Figs. 1 to 4 is mild enough 
to meet this condition. A much simpler 
and more general expression for tm is 
obtained by rewriting Eq. 8 in terms of 
the Euler-Maclaurin summation form- 
ula (19). The result, 

t 
A (yo + y) =f y dt = - t - 

12 

(d3y/dt' - [d3y/dt3]o) t 
^720 . 

-- 
t- . ... etc. (18) 720 

reduces to the quadratic equation 

(yo + y) t (dy/dt - [dy/dt]o) 
2 12 

(19) 

by ignoring terms beyond the second. 
When t = t,, y becomes Ym, 0 = 0m, 
dy/dt = (dy/dt) = 0, and Eq. 19 
becomes 

(Yo + y) (dy/dt)o 2 

2 tm 12 m 

The value of dy/dt at any time is de- 
fined by Eq. 2, so at to, 

(dy/dt)o = klXoyo - ky0o (21) 

which converts Eq. 20 to 

Y (yo + y ,) +(kixoyo 
- k2yo) t Gm= 2 12 

(22) 

Solution of this quadratic equation 
yields the desired value of t,,,. The pre- 
dicted values of tm shown in Table 1 
were obtained in this way: their agree- 
ment with the derived values appearing 
there confirms further the predictability 
of several of the significant properties of 
a future epidemic from a prior knowl- 
edge of k, and ks, obtained by the 
graphic procedure already discussed. 
The ratio, kk/k,, provided by Bailey's 
treatment is useless for this purpose 
because of the dependence of t,, upon 
a knowledge of k, and k2 separately, 
as shown by the form of the right-most 
coefficient in Eq. 22. 

The appeal of the Bailey model, as 
applied to epidemiology in the strict 
sense, is qualified (3, pp. 172-175; 6, p. 
168) by the failure of real, macro- 
scopic populations to behave in a fully 
deterministic manner-as a "two-di- 
mensional ideal gas," to paraphrase 
Muench. Its credibility is nevertheless 
suggested by the basic similarity of the 
x- and y-traces in Figs. 1 to 4 to those 
found experimentally (20). The objec- 
tion is further tempered by the versa- 
tility with which the model can account 
for the early accelerative phase of 
epidemic growth seen both in induced 
(20) and in spontaneous (21) epidemics. 
The relative prominence of this fea- 
ture, exemplified by the early part of 
the y-traces in Figs. 1 to 4, is obviously 
related to k2/kl. 

It will be even more sensitive to 
changes in the initial makeup of 
the population (yo/xo), but, how- 
ever faintly discernible, it will always 
be inherently present. The relevance 
of the analytic methods described here 
to a real epidemic thus seems accept- 
able as a heuristic approach to reality, 
and the expected scatter in the raw 
data will simply require the applica- 
tion of suitable linear regression 
methods (22) when experimental ana- 
logs of Figs. 5 and 6 are constructed. 
When computer facilities are available, 
an iteration method recently described 
by Gay (23) will be preferable since it 
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will provide statistically correct values 
of k, and k2 from imprecise data by 
reversal of the procedure used here to 
obtain Figs. 1 to 4. 
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