
It simply comes down to this. If a woman 
with a higher degree is really career 
oriented and we think she will spend all 
or at least most of her time working, 
we'll hire her; if not we won't. 

Another commented: 

In general, length of service is less for 
women at the upper levels than for men 
but there are many exceptions. We hired 
some Ph.D. women 15 years ago who are 
still with us. We hired several real fireball 
Ph.D. men 2 years ago, and they have 
already left us. 

One of the persistent needs reported 
by women chemists who have left the 
labor force for the "3 M's" is for 

part-time employment (2). Almost no 
part-time job opportunities exist in 
these 65 laboratories, nor are they 
likely to become available in the fu- 
ture. About 80 percent of the firms 
said they never hired women (or 
men) on a part-time basis. The three 
reasons they most commonly gave 
were that (i) space and equipment 
were limited; (ii) most jobs require 
continuity and cannot be broken into 
small parts; (iii) too many tasks re- 

quire continuous supervision, consul- 

tation, or teamwork to make part-time 
work practicable. Yet there were a few 
notable exceptions. In one large, well- 
known firm employing about 50 wom- 
en with B.S. degrees in chemistry, eight 
of the women were on part-time assign- 

ment, working either three 8-hour days 
a week or 4 hours a day, 5 days a 
week. This part-time program, resulting 
from a special need, had been in opera- 
tion for 5 years with satisfactory results. 

What is the employment outlook in 
research laboratories for women with 

training in chemistry? Over three- 
fourths of the firms said "very favor- 
able." With the smaller firms exclud- 
ed, the favorable rating was virtually 
100 percent. It appears to me that 
this favorable outlook by laboratory di- 
rectors rests on two assumptions: (i) 
the total number of research jobs will 

expand as rapidly in the next 5 years 
as in the past 5 years, during which 
laboratories employed an ever-increas- 
ing proportion of the nation's rapidly 
expanding professional, technical, and 
scientific force (3); (ii) beginning 
jobs will be increasingly available to 
women in the large-scale laboratories 
as men continue to upgrade their train- 
ing and enter chemistry above the B.S. 
level (4). 
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Reinforcement Schedule Generated 

by an On-line Digital Computer 

Abstract. A LINC digital computer 
was used to generate an autoregressive 
schedule of reinforcement. On such a 
schedule the probability of reinforce- 
ment is a function of the similarity in 
duration of the intervals between suc- 
cessive responses. A detailed analysis 
of the data obtained from monkeys on 
this schedule demonstrated two distinct 
tendencies in their behavior: a tendency 
for periodic response and a tendency 
for serial dependence between succes- 
sive interresponse times. 

We now know a great deal about 
how to shape and maintain operant 
behavior by the process of differential 
reinforcement. The most elegant and 

searching manifestations of this process 
have been provided by experiments on 
schedules of reinforcement (1). The rea- 
son is that reinforcement schedules per- 
mit one to make an extremely signifi- 
cant transformation; they make it pos- 
sible to convert complex patterns of 
stimuli and responses into serial and 

temporal ones, much as the nervous 

system is thought to transform informa- 
tion into temporally coded patterns (2). 

Digital computers add new dimen- 
sions to the study of reinforcement 
schedules. They enable us to fabricate 
schedules that are impossible to pro- 
gram by conventional methods and 
then facilitate detailed observations of 
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differentially reinforcing low variability 
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in response rate. Although with conven- 
tional equipment we can devise sched- 
ules which produce low variability-for 
example, "Differential reinforcement of 
low rate with limited hold" (1)-the 
low variability is only a by-product of 
the contingencies. In this report we 
describe a computer-generated schedule 
which controls variability directly, and 
we demonstrate how a detailed analysis 
of the data reveals the multiple effects 
of the schedule. Both the programming 
and the analysis were performed by a 
small, high-speed LINC computer (3). 

Our "autoregressive reinforcement 
schedule" is a stochastic schedule that 
takes its name from a category of 
time series in which successive observa- 
tions depend on a function of the 
previous term or terms plus a random 
additive error (4). It differentially rein- 
forces low variability in response rate 
by promoting consistency in the inter- 
vals between responses, or the inter- 
response times. It specifies that the 
probability of reinforcement of the 
response that terminates an inter- 
response time Ii, depends on the sim- 
ilarity of I, and the previous inter- 
response time, I_i1. The closer the 
similarity, the greater the probability of 
reinforcement. The organism's own be- 
havior then becomes the basis of the 
response-reinforcement correlation. 

To determine whether the conditions 
for reinforcement are met, the program 
first computes the quotient of the two 
successive interresponse times, always 
placing the larger value in the numer- 
ator. The quotient corresponds to a 
number, equivalent to a certain p-value, 
in a table stored in the computer mem- 
ory. A random number is then gener- 
ated and compared with the table entry. 
If the table entry is greater, reinforce- 
ment is programmed. The function re- 
lating probability of reinforcement to 
the quotient appears in Fig. 1. Prob- 
ability ranges from 0 to 1.0 on the 
ordinate and the quotient ranges from 
1.0 to 1.4 on the abscissa. If 1ii- 1_-, 
p- 1.0. If the quotient exceeds 1.4, 
p 0. A quotient of approximately 
1.05 is equivalent to p = 0.5. 

Three female monkeys, one Macaca 
speciosa and two M. nemestrina, were 
placed in primate restraining chairs and 
subjected to the schedule. A response 
was defined as depression of a lever 
far enough to actuate a microswitch. 
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Three female monkeys, one Macaca 
speciosa and two M. nemestrina, were 
placed in primate restraining chairs and 
subjected to the schedule. A response 
was defined as depression of a lever 
far enough to actuate a microswitch. 
A fruit drink (0.1 ml) was used as 
reinforcement. Each experimental ses- 
sion lasted 90 minutes. During pre- 
liminary training sessions, each press 
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of the lever was reinforced. The mon- 

keys were then subjected to the auto- 

regressive reinforcement schedule and 
their behavior rapidly came under its 
control. Figure 2 shows a histogram of 
2048 successive interresponse times for 
one monkey. This histogram is a photo- 
graph from the LINC oscilloscope, 
as are the succeeding figures. The 
distribution appears Gaussian in shape 
and rather narrow, the modal inter- 
response time being about 450 msec. 
The data for this monkey were inter- 
mediate in variability, compared to 
those for the other two monkeys. Such 
a narrow distribution demonstrated 

clearly that the contingencies of the 
autoregressive reinforcement schedule 
had considerable effect on the con- 
sistency of the interresponse times. 

Figure 3 shows the distribution of the 
differences between successive interre- 
sponse times; starting at the left, each 
bar represents differences between suc- 
cessive times of 0, 10, 20, 30 msec, 
and so forth. The modal difference was 
10 msec, or 1 clock pulse of resolution. 

The relatively narrow distribution of 

interresponse times in Fig. 2, and the 
distribution of successive differences in 
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Fig. 1. Function relating probability of 
reinforcement to the quotient of two suc- 
cessive interresponse times. 
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Fig. 2 (left). Distribution of interresponse times on the autoregressive reinforcement 
schedule. Abscissa markers are placed at 250-msec intervals. N = 2048. Fig. 3 
(right). Distribution of differences between successive interresponse times. Successive 
bars represent differences of 0, 10, 20, and 30 msec, and so forth. The last category 
represents all differences greater than 320 msec. N = 1032. 

Fig. 3, suggest that the monkeys were 

responding almost periodically. The 

periodicity is demonstrated vividly by 
plotting a function called the Expecta- 
tion Density, a term proposed by Hug- 
gins (5). This function gives the ex- 

pected number of occurrences of an 
event within time interval ti following 
a known occurrence at t - 0. It is com- 

puted by letting successive instances of 
the event-here a response-take on 
the value of t - 0. The distribution of 
later occurrences is given as an average 
over the ensemble of possible signals. 

An Expectation Density plot is dis- 

played in Fig. 4. The abscissa repre- 
sents a total period of 2.5 seconds. The 
first peak lies at approximately 450 
msec, which corresponds to the histo- 
gram for interresponse times in Fig. 2. 
The steep slopes of this peak indicate 
that, given an event at t 0, it is 
most likely that the next event will 
occur about 450 msec later, within 
rather narrow limits. The second peak 
indicates that, given an event at t = 0, 
the second succeeding event is most 
likely to occur about 900 msec later. 
The fact that the second peak is 
flatter indicates that the distribution of 
times between every other response is 
more variable than the distribution of 
interresponse times, a conclusion diffi- 
cult to reach merely by inspecting the 
appropriate scaled histograms. Since 
the peaking becomes less marked with 
distance from t = 0, and approaches a 
steady-state expectation of occurrence 
at the right-hand side of the plot, the 
process cannot be purely periodic. A 
pure periodic process would produce 
line spectra. 

Although the autoregressive rein- 
forcement schedule generates nearly 
periodic responding, such a distribution 
in time might arise from a truly peri- 

odic process subjected to random per- 
turbations. But, as McGill points out 
(6), such a process would be self- 
compensating; long intervals should 
tend to be followed by short ones 
and vice versa. The autoregressive re- 
inforcement schedule, however, differ- 

entially reinforces just the reverse tend- 
ency. To determine the extent to which 
it maintains such behavior, we must 
examine the behavior as a time series 
-that is, we must look for serial 

dependencies. 
One way to do this is to examine the 

data serially. In Fig. 5 we show a 

sequence of 128 interresponse times. 
Succession is from left to right and 
duration is represented as height. In 
order to smooth the data, we clipped 
the higher amplitudes and filtered the 
series once by a moving average (7) 
where x,, = (xn-l + 2x,, + x,, +)/4. The 
smoothed function is not an unjust 
reflection of the raw data. It suggests 
that the interresponse times drift up 
and down about the mean and that 
the period of this drift is relatively long. 

One other way to examine such de- 

pendencies is shown in Fig. 6, which 
shows the distribution of sequences of 

interresponse times above and below 
the median value. The plots are ar- 
ranged as follows. The top set of traces 

represents sequences of four successive 

interresponse times; those times below 
the median are assigned the value 0. 
Those above are assigned the value 1. 
Then, reading from left to right, we 
show sequences equivalent to the bi- 

nary representations of the decimal 
numbers 0 to 15, or 0000 to 1111. 
Thus, the trace at the extreme left 

represents the number of occurrences 
of the sequence 0000; the next, the 
number of occurrences of the sequence 
0001; and the trace at the far right, 
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the number of occurrences of the se- 
quence 1111. The middle set of traces 
represents sequences of three, that is, 
binary representations of 000 to 111. 
The bottom set represents sequences 
of two interresponse times equivalent 
to 00, 01, 10, and 11 as one proceeds 
from left to right. 

Intervals between responses that are 
close to one another tend to be similar 
in value; indeed, the most common se- 

quences are those of interresponse times 
in the same category. This display also 
demonstrates that the interresponse 
times drift up and down around a 
central value, since the mean value re- 
mains relatively stable (Fig. 5). We can 
also determine departures from ran- 
domness in sequential observations by 
calculating the number of runs in a 
series. If a run is defined as a sequence 
of ones or zeros bounded by the op- 

Fig. 4 (left). Expectation Density. Abscissa markers are placed at 100-msec inter- 
vals. Each ordinate marker represents a rate of two occurrences per second. N 
2048. Fig. 5 (right). Sequential distribution of 128 consecutive interresponse times. 
Time runs left to right, and duration is given by height. The bottom marker represents 
zero and the top marker represents 0.5 second. 

Fig. 6 (left). Tabulation of sequences of interresponse times above and below the 
median (N= 512). Top, sequences of 4; middle, sequences of 3; bottom, sequences 
of 2. Fig. 7 (right). Serial correlation plot (lag 1) based on 2048 consecutive in- 
terresponse times. Duration of Ii is given by the abscissa; duration of Ii+,, by the 
ordinate. 

Fig. 8 (left). Distribution of successive differences after a random shuffle of order (com- 
pare Fig. 3). Fig. 9 (right). Expectation Density function after a random shuffle 
of order (compare Fig. 4). 
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posite symbol or no symbol, the runs 
test (8) tells us whether, for a given 
number of observations, the number of 
runs obtained could have arisen by 
chance. In the present case, the number 
is lower than it would be if it arose by 
chance. 

A way to examine serial relationships 
that makes greater use of the available 
resolution is to plot serial correlations, 
that is, the correlation of I, and + L, 
where L is the lag between successive 
interresponse times. A serial correla- 
tion plot for L = I is shown in Fig. 7. 
Despite the narrowness of the distribu- 
tion, a definite positive relation is evi- 
dent; the shorter interresponse times 
tend to be followed by short ones, and 
the longer interresponse times by long 
ones. 

It is clear that serial dependencies do 
exist in our data. One way to assess 
their contribution to the temporal pat- 
terning of the behavior is to dismantle 
the original sequence of interresponse 
times and then reassemble it according 
to a random process (2). The results of 
such a random shuffle are given in 
Figs. 8 and 9. 

Figure 8 shows the distribution of 
successive differences in the shuffled 
sequence. Compared to the original 
data (Fig. 3), the distribution is flatter 
and broader, indicating that the dis- 
tribution in Fig. 3 does indeed arise 
from serial dependencies. Figure 9 
shows an Expectation Density plot de- 
rived from the shuffled data. When this 
plot is compared with that of Fig. 4, 
it becomes apparent that the periodicity 
in the latter is due only to the overall 
distribution of interresponse times, and 
not to their serial relationship. In fact, 
eliminating the serial relationship makes 
the function slightly more periodic. 

The behavior generated by an auto- 
regressive reinforcement schedule ap- 
pears, therefore, to be governed by two 
components. One is a tendency of the 
monkey to respond periodically. The 
second component, which may be 
viewed as superimposed upon the first, 
is a process more directly controlled 
by the schedule contingencies. It is 
reflected by the serial dependencies in 
the data. Both tendencies are respon- 
sible for the low variability observed. 

We have displayed many features of 
the behavior generated by the auto- 
regressive reinforcement schedule in 
order to demonstrate the ability of the 
digital computer to perform a detailed 
analysis of behavior. Although it is 
apparent that the various analyses and 
displays greatly overlap, each one views 
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the data from a slightly different point 
of vantage and contributes some unique 
information. It also is apparent that 
even a relationship between behavior 
and its consequences as conceptually 
simple as the autoregressive reinforce- 
ment schedule produces behavior whose 
finer and more critical details cannot 
be appreciated without the assistance of 
computer technology (9). Perhaps it 
is even more important to note that 
programming such a schedule would 
have been impossible with the facilities 
we now possess in most laboratories. 
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Various stochastic theories of learn- 
ing account for the classification or 
conceptualization of behavior in terms 
of hypothesis testing. The learning proc- 
ess is described as follows: the subject 
randomly samples from a population 
of hypotheses, and when a stimulus is 
presented he makes the response deter- 
mined by the hypothesis sampled. In 
all hypothesis models proposed so far, 
it has been assumed that the same 
hypothesis is kept until information 
is received which infirms it (1). As a 
consequence, the probability is zero that 
a subject will shift from an incorrect 
hypothesis to the correct hypothesis 
on correct trials. The critical assumption 
of "no-change-if-no-error" has not been 
checked directly. Indeed, in most of the 
experiments designed to test these mod- 
els of learning, it has not been possi- 
ble to identify the hypotheses used on 
successive trials. Levine (2) attempted 
such identification by inferring hypoth- 
eses from sequences of responses given 
on blank trials (that is, without out- 
comes). However, since his procedure 
did not rule out the possibility that 
the hypotheses could change in the 
course of the test responses themselves, 
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identification of the hypotheses could be 
impaired. This objection may be im- 
portant, as suggested by the following 
results. 

Three experiments were conducted 
with three different groups of college 
students. In experiment I, each subject 
was given a set of eight white cards; 
on each card was printed a string of 
three letters, each letter being either 
D or K, with all possible combinations 
represented once in the group of cards. 
The subject was requested to classify 
the cards correctly by placing them 
in two columns, headed by a pink 
and a blue label, respectively. After the 
subject had classified the cards once 
without any clue concerning the "cor- 
rect" criterion, the experimenter replaced 
one of the white cards by a colored 
card, either pink or blue, having exactly 
the same pattern of letters as that on 
the white card removed. The subject 
was instructed to place this card in 
the group to which it belonged (iden- 
tified by the color) and, furthermore, 
to make as many changes in the place- 
ment of the other cards, or none, as 
appeared necessary in order to achieve 
the correct classification of all cards. 
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to make as many changes in the place- 
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When the subject indicated that he was 
satisfied with his new classification, 
which might be the same as the previous 
one, he was given a second colored 
card. The presentation of each addi- 
tional colored card started a new trial. 
The procedure was repeated until all 
white cards were replaced. As the subject 
kept all cards before him, the "correct" 
classification, defining the conceptual 
problem to be solved, was completely 
shown after eight trials. In this experi- 
ment the problem was the same for 
all subjects. It is described by the infor- 
mation cards which were given in this 
fixed order: DKD(blue), KKK(pink), 
DDD(pink), KDK(blue), DKK(pink), 
KDD(pink), DDK(blue), KKD(blue). 

In experiment II, exactly the same 
cards and essentially the same procedure 
were used as in experiment I. But the 
subjects were given successively six 
problems to solve, with the same cards, 
ranging from the simplest (one-dimen- 
sional) problem to complex ones (dis- 
junctive three-dimensional). The order 
of the problems and the sequence of 
information were constant. 

In experiment III, the patterns to 
be classified included strings of 1, 2, 
3, 4, and 5 letters, all 62 possible com- 
binations of D's and K's being repre- 
sented once. The strings were typed 
together on single sheets of paper, in 
fixed order for the individual, and in 
randomized order for the group of 
subjects, one sheet being used per trial. 
The patterns were to be classified by 
either circling or crossing the strings 
of letters. After each classification the 
subject selected one string of letters 
for which the experimenter indicated 
the "correct" response (circling or cross- 
ing). Each new sheet contained the past 
as well as the new information given by 
the experimenter. The single problem, 
given to all subjects, resembled that 
of experiment I: circling was the "cor- 
rect" response requested for all strings 
of letters ending in DD or KK. Except 
for the differences in the experimental 
procedure, the instructions were similar 
to those given in experiments I and 
II. 

Thus, the three experiments had the 
following common features: (i) on each 
trial the subject made a binary class- 
ification of the entire set of stimulus 
patterns (strings of letters); (ii) on each 

When the subject indicated that he was 
satisfied with his new classification, 
which might be the same as the previous 
one, he was given a second colored 
card. The presentation of each addi- 
tional colored card started a new trial. 
The procedure was repeated until all 
white cards were replaced. As the subject 
kept all cards before him, the "correct" 
classification, defining the conceptual 
problem to be solved, was completely 
shown after eight trials. In this experi- 
ment the problem was the same for 
all subjects. It is described by the infor- 
mation cards which were given in this 
fixed order: DKD(blue), KKK(pink), 
DDD(pink), KDK(blue), DKK(pink), 
KDD(pink), DDK(blue), KKD(blue). 

In experiment II, exactly the same 
cards and essentially the same procedure 
were used as in experiment I. But the 
subjects were given successively six 
problems to solve, with the same cards, 
ranging from the simplest (one-dimen- 
sional) problem to complex ones (dis- 
junctive three-dimensional). The order 
of the problems and the sequence of 
information were constant. 

In experiment III, the patterns to 
be classified included strings of 1, 2, 
3, 4, and 5 letters, all 62 possible com- 
binations of D's and K's being repre- 
sented once. The strings were typed 
together on single sheets of paper, in 
fixed order for the individual, and in 
randomized order for the group of 
subjects, one sheet being used per trial. 
The patterns were to be classified by 
either circling or crossing the strings 
of letters. After each classification the 
subject selected one string of letters 
for which the experimenter indicated 
the "correct" response (circling or cross- 
ing). Each new sheet contained the past 
as well as the new information given by 
the experimenter. The single problem, 
given to all subjects, resembled that 
of experiment I: circling was the "cor- 
rect" response requested for all strings 
of letters ending in DD or KK. Except 
for the differences in the experimental 
procedure, the instructions were similar 
to those given in experiments I and 
II. 

Thus, the three experiments had the 
following common features: (i) on each 
trial the subject made a binary class- 
ification of the entire set of stimulus 
patterns (strings of letters); (ii) on each 
trial the classification of a single stim- 
ulus card was reinforced; (iii) the subject 
had before him a complete record of 
past information and was prevented 
from making any classification response 
inconsistent with this information. 
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Observable Changes of Hypotheses under Positive Reinforcement 

Abstract. In mathematical models of concept learning it has consistently been 
assum?ed that positive reinforcement cannot lead to a change of the hypothesis 
determining the overt response. When hypotheses are experimentally identified 
and recorded along with positive and negative reinforcements of stimuh,s- 
response pairs, it can be shown that hypotheses may change after a positive 
reinforcement. Positive reinforcement has an information content for subjects 
that has not yet been adequately recognized in concept formation studies. 
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