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tween the two schedules which the 
animal completes in the first step. The 
procedure is sensitive to small signal- 
ratio increments. The gradual decrease 
in the percentage of correct discrimi- 
nations suggests that the ability to dis- 
criminate ratios is a continuous, not 
an all or none, process. 

This experiment demonstrates the 
D 5488 usefulness of choice behavior as a de- 
D 4800 pendent variable in the experimental 

analysis of behavior. The theory of 
signal detectability differentiates be- 
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to investigate those variables, such as 
drugs, which influence the stimuli that 
control behavior on reinforcement 
schedules (4). 
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Preferential Settling of the 
Sea Anemone Stomphia coccinea 
on the Mussel Modiolus modiolus 

Abstract. In resettling after its' "swim- 
ming" response, Stomphia shows a spe- 
cial behavior pattern when in contact 
with bivalve shells. Movements of the 
tentacles, oral disc and column, and 
huge swellings of the pedal disc are 
the chief features in a coordinated 
purposive sequence, which settles the 
anemone on the shell in a few minutes. 

The sea anemone Stomphia coccinea 
is well known for the swimming re- 
sponse it shows on contact with certain 
starfishes (1, 2) and with a nudibranch 
(3) and to electrical stimuli (4). By 
this response, unique among sea anem- 
ones, Stomphia detaches its basal disc 
quickly and, once free, "swims" away 
by flexing its body repeatedly. 

I have recently observed a second 
complex behavior pattern in this animal 
in response to the shell of the mussel, 
Modiolus modiolus. Stomphia coccinea 
(the so-called "small" Stomphia) col- 
lected by dredging in San Juan Chan- 
nel of Puget Sound usually comes up 
on the shells of Modiolus. This suggests 
preferential settling on these shells. In 
a trial experiment, 18 Stomphia were 
induced to swim by contact with the 
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a trial experiment, 18 Stomphia were 
induced to swim by contact with the 
starfish Dermasterias imbricata (1, 2). 
After swimming ceased, each anemone 
was placed in a separate bowl contain- 
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Fig. 1. (a) Response of Stomphia coccinea 
to Modiolus modiolus. The tentacles and 
oral disc are directed toward the shell; 
the pedal disc has expanded and is making 
contact with shell. (b) Stomphia sliding 
across shell toward final position on top. 
Time between a and b, 12 minutes. 

Fig. 1. (a) Response of Stomphia coccinea 
to Modiolus modiolus. The tentacles and 
oral disc are directed toward the shell; 
the pedal disc has expanded and is making 
contact with shell. (b) Stomphia sliding 
across shell toward final position on top. 
Time between a and b, 12 minutes. 

ing filat stones, a living Modiolus, and 
an ample area of glass between. The 
animals were arranged lying on the 
glass so that the tentacles of six Stom- 
phia and the pedal discs of six others 
were touching shells; the remaining 
six were touching stones. One hour 
later, 11 of the 12 animals touching 
shells had settled on shells. Of the rest, 
five had settled on the glass and two 
were still unattached. 

When Stomphia comes out of its 
"post-swimming torpor" (2), it usually 
settles quickly on any available surface 
by attaching its basal disc little by little 
to that surface. Stomphia in contact 
with shells behaved differently. Some 
bent over shells with tentacles and oral 
disc extended outwards like an um- 
brella. Others leaned on shells with a 
few tentacles in contact. This tentacular- 
oral activity was followed by remark- 
able movements of the basal region. 
Sometimes it was extended horizontally 
as a huge plate which was turned 
toward the shell. In other instances, it 
swelled up into a hemisphere which was 
pushed towards the shell. These were 
slow flowing movements, just quick 
enough to be visible. The events be- 
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ginning with the tentacle response and 
ending with the movement of the basal 
disc to the shell took only about I to 
2 minutes. Figure 1 shows stages in this 
behavior pattern. 

In a number of experiments the fol- 
lowing observations were made. 

1) If even a small area of the basal 
disc made contact with the shell, it ad- 
hered quickly and spread itself on the 
shell. When this happened, the oral- 
tentacular contact ceased and the col- 
umn, which had been bent into a right 
angle, became straight again. If the 
basal disc failed to make contact with 
the shell in the first movement, it re- 
sumed its normal shape and position, 
but after a pause, during which the 
anemone's tentacles moved farther 
across the shell, the performance was 
repeated not once but several times 
if necessary. 

2) Stomphia which had settled on 
other surfaces up to about 3 hours 
earlier transferred readily to Modiolus 
shells. With tentacles and oral disc on 
the shell, the basal disc was released 
from its attachment on the other sur- 
face and moved over to the shell. Some- 
times this involved a long (up to 1 
hour) process of advancing and retreat- 
ing before the gap between the other 
surface and the shell was successfully 
bridged. Animals which had been set- 
tled on other surfaces more than 3 
hours showed no tendency to transfer 
to shells. 

3) This behavior was not specific to 
shells of Modiolus but was evoked by 
shells of other bivalve molluscs, for 
example, Pecten. An empty shell evoked 
the same response. 

Films at ordinary and time-lapse 
speeds emphasize the purposive features 
of this behavior pattern. The muscular 
and hydrodynamic mechanisms involved 
and the nervous coordination are diffi- 
cult to comprehend. Remembering that 
Stomphia is also able to swim in re- 
sponse to other specific stimuli, and 
recalling the behavior pattern of the 
sea anemone Calliactis in relation to 
hermit crabs (5), one realizes that the 
behavior of these so-called simple ani- 
mals can be surprisingly complex. 
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Zoology Department, 
University of Alberta, 
Edmonton, Alberta, Canada 
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Visual Accommodation in 

Human Infants 

Abstract. By the technique of dy- 
namic retinoscopy, we found that the 
alert newborn infant can focus his eye 
on targets only at a particular distance 
(median, 19 centimeters). Images of 
targets nearer or farther away are pro- 
portionately blurred. However, during 
the first few postnatal months the 
range of flexible accommodation in- 
creases and approximates adult per- 
formance by the 4th month. 

Increasing interest in the vision of 
newborn infants is demonstrated by 
the growing amount of research on 
their acuity, form discrimination, pref- 
erences, and other visually controlled 
behaviors (1). In all such studies the 
focus of the retinal image limits the 
fineness of discrimination. Moreover, 
changes in focus may be confounded 
with other conditions that determine 
responses to visible objects. Neverthe- 
less, in practically all research on in- 
fant vision, focal length has been an 
uncontrolled variable. Whereas accom- 
modation of the lens in the eye of 
the young adult automatically focuses 
the retinal image for target distances 
ranging from 10 cm to optical in- 
finity, we cannot assume comparable 
behavior in very young infants. The 
fragmentary data that are available 
suggest limited accommodative capac- 
ity, at best, in the newborn human 
(2, 3). Even if an infant's eyes are 
oriented toward a target, his optical 
system may be focused for any dis- 
tance along his line of sight. The blur- 
ring of the retinal image that results 
from inadequate focusing may inter- 
act significantly with the effects of ex- 
perimental variables. We now report 
the first data known to us on the 
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the first data known to us on the 
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