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tions of H,IS in rice soil incubated in 
the laboratory, and subsequent in- 
vestigations have shown that Akiochi 
disease, a physiological disorder of rice 
in Japan, is caused by H2S (23). 
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Signal Detection in Fixed-Ratio Schedules 

Abstract. A psychophysical choice technique can be used to measure dis- 
crimination of the stimuli produced by two fixed-ratio schedules. As the difference 
between the two ratios is reduced, the number of errors in discrimination in- 
creases. The analysis differentiates between discrimination and response bias, 
which are frequently confused in animal psychophysics. 
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Abstract. A psychophysical choice technique can be used to measure dis- 
crimination of the stimuli produced by two fixed-ratio schedules. As the difference 
between the two ratios is reduced, the number of errors in discrimination in- 
creases. The analysis differentiates between discrimination and response bias, 
which are frequently confused in animal psychophysics. 

The theory of signal detectability was 
originally developed to specify the elec- 
tronic detection of radar signals in 
noise. Psychophysical methods based on 
this theory have been applied in sensory 
psychology to measure detection of 
auditory signals in noise by human ob- 
servers (1). Psychophysical methods 
are usually applied to exteroceptive 
stimuli whose properties can be phys- 
ically specified. We demonstrate that 
an analysis adapted from the theory of 
signal detectability can also be applied 
to detection of stimuli resulting from 
different reinforcement schedules. 

In a fixed-ratio schedule of rein- 
forcement, a hungry animal is rein- 
forced with food at the completion of 
a fixed number of responses counted 
from the preceding reinforcement. 
Ferster and Skinner (2) point out that 
either the number of responses in the 
fixed ratio or the time required to emit 
them could serve as a discriminative 
stimulus. The present study makes no 
attempt to specify the nature of such 
discriminative stimuli, but does at- 
tempt to demonstrate that the dis- 
crimination of these stimuli may be 
studied by means of psychophysical 
methods. 

Two adult White Carneaux pigeons 
were maintained at 80 percent of their 
"free feeding" weights. The pigeons 
were tested in a chamber containing 
three plexiglass keys mounted on one 
wall. Each key was illuminated from 
behind by a light bulb, each of the 
three bulbs being of a different color. 
A food magazine located below the 
center key was raised to permit access 
to grain as reinforcement. 

There were two steps in the pro- 
cedure. In the first step the bird pecked 
the center key the number of times 
specified by a fixed-ratio schedule. In 
the second step the bird pecked one 
of the two side keys. During the first 
step, the center key was illuminated 
with white light and one of two fixed- 
ratio requirements was in effect. The 
schedule for each trial was selected 
by a pseudorandom series (3). We 
will refer to the shorter fixed ratio as 
the "signal" and the longer fixed ratio 

The theory of signal detectability was 
originally developed to specify the elec- 
tronic detection of radar signals in 
noise. Psychophysical methods based on 
this theory have been applied in sensory 
psychology to measure detection of 
auditory signals in noise by human ob- 
servers (1). Psychophysical methods 
are usually applied to exteroceptive 
stimuli whose properties can be phys- 
ically specified. We demonstrate that 
an analysis adapted from the theory of 
signal detectability can also be applied 
to detection of stimuli resulting from 
different reinforcement schedules. 

In a fixed-ratio schedule of rein- 
forcement, a hungry animal is rein- 
forced with food at the completion of 
a fixed number of responses counted 
from the preceding reinforcement. 
Ferster and Skinner (2) point out that 
either the number of responses in the 
fixed ratio or the time required to emit 
them could serve as a discriminative 
stimulus. The present study makes no 
attempt to specify the nature of such 
discriminative stimuli, but does at- 
tempt to demonstrate that the dis- 
crimination of these stimuli may be 
studied by means of psychophysical 
methods. 

Two adult White Carneaux pigeons 
were maintained at 80 percent of their 
"free feeding" weights. The pigeons 
were tested in a chamber containing 
three plexiglass keys mounted on one 
wall. Each key was illuminated from 
behind by a light bulb, each of the 
three bulbs being of a different color. 
A food magazine located below the 
center key was raised to permit access 
to grain as reinforcement. 

There were two steps in the pro- 
cedure. In the first step the bird pecked 
the center key the number of times 
specified by a fixed-ratio schedule. In 
the second step the bird pecked one 
of the two side keys. During the first 
step, the center key was illuminated 
with white light and one of two fixed- 
ratio requirements was in effect. The 
schedule for each trial was selected 
by a pseudorandom series (3). We 
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as the "noise." The fixed ratio required 
under the signal schedule was varied 
during the experiment, while the noise 
schedule remained constant at fixed 
ratio 50. 

When the bird had pecked the 
center key the required number of 
times, the light for the center key 
went off and the two side keys were 
illuminated. Reinforcement of a peck 
on the side key was contingent upon 
discriminating which schedule had 
been in effect on the center key. If the 
bird had just pecked the center key 
the number of times specified by the 
signal schedule, a peck on the left key 
was reinforced while a peck on the 
right key darkened the box and delayed 
reinforcement for 60 seconds. If the 
bird had just pecked the center key the 
number of times specified by the noise 
schedule, the reinforcement contin- 
gencies were reversed. Each animal was 
given 100 trials a day, 50 with a signal 
schedule on the center key and 50 
with a noise schedule. 

Training began with fixed ratio 5 as 
the signal and fixed ratio 50 as the 
noise. The signal-noise difference was 
gradually reduced as the discrimination 
improved. Both birds met a criterion 
of 90 percent responses for two con- 
secutive days with fixed ratio 35 as the 
signal, and a signal-noise difference of 
15. The discrimination was established 
in about 120 sessions. After the cri- 
terion was met, the psychophysical 
function for the discrimination of ratios 
was obtained by daily increasing the 
signal ratio in increments of 2 until 
the percentage of correct responses 
fell below 60 percent. Four determi- 
nations were made at each of the 
signal ratios in the following series: 
ascending, descending, ascending, de- 
scending. 

Figure 1 presents the results for bird 
5488. Each datum point is the per- 
centage of the correct responses for 
each of the four determinations at 
each signal condition. The percentage 
decreases as the signal ratio approaches 
the noise ratio. The results for bird 
4800 are similar. The percentage of 
correct responses for both birds falls 
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to investigate those variables, such as 
drugs, which influence the stimuli that 
control behavior on reinforcement 
schedules (4). 
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Preferential Settling of the 
Sea Anemone Stomphia coccinea 
on the Mussel Modiolus modiolus 

Abstract. In resettling after its' "swim- 
ming" response, Stomphia shows a spe- 
cial behavior pattern when in contact 
with bivalve shells. Movements of the 
tentacles, oral disc and column, and 
huge swellings of the pedal disc are 
the chief features in a coordinated 
purposive sequence, which settles the 
anemone on the shell in a few minutes. 

The sea anemone Stomphia coccinea 
is well known for the swimming re- 
sponse it shows on contact with certain 
starfishes (1, 2) and with a nudibranch 
(3) and to electrical stimuli (4). By 
this response, unique among sea anem- 
ones, Stomphia detaches its basal disc 
quickly and, once free, "swims" away 
by flexing its body repeatedly. 

I have recently observed a second 
complex behavior pattern in this animal 
in response to the shell of the mussel, 
Modiolus modiolus. Stomphia coccinea 
(the so-called "small" Stomphia) col- 
lected by dredging in San Juan Chan- 
nel of Puget Sound usually comes up 
on the shells of Modiolus. This suggests 
preferential settling on these shells. In 
a trial experiment, 18 Stomphia were 
induced to swim by contact with the 

to investigate those variables, such as 
drugs, which influence the stimuli that 
control behavior on reinforcement 
schedules (4). 
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tentacles, oral disc and column, and 
huge swellings of the pedal disc are 
the chief features in a coordinated 
purposive sequence, which settles the 
anemone on the shell in a few minutes. 

The sea anemone Stomphia coccinea 
is well known for the swimming re- 
sponse it shows on contact with certain 
starfishes (1, 2) and with a nudibranch 
(3) and to electrical stimuli (4). By 
this response, unique among sea anem- 
ones, Stomphia detaches its basal disc 
quickly and, once free, "swims" away 
by flexing its body repeatedly. 

I have recently observed a second 
complex behavior pattern in this animal 
in response to the shell of the mussel, 
Modiolus modiolus. Stomphia coccinea 
(the so-called "small" Stomphia) col- 
lected by dredging in San Juan Chan- 
nel of Puget Sound usually comes up 
on the shells of Modiolus. This suggests 
preferential settling on these shells. In 
a trial experiment, 18 Stomphia were 
induced to swim by contact with the 
starfish Dermasterias imbricata (1, 2). 
After swimming ceased, each anemone 
was placed in a separate bowl contain- 
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